MOBFOG – Mostra Brasileira de Foguetes – Você Não Vai Acreditar no Desempenho desses Pequenos Foguetes

palavras-chave: foguetes, mobfog, física, ensino, astronáutica, oba.

Garrafas PET, água, ar comprimido e paixão pelo espaço! São esses os ingredientes para construção e lançamento dos foguetes do nível 3 da MOBFOG – A Mostra Brasileira de Foguetes, uma competição estudantil irmã da célebre OBA – Olimpíada Brasileira de Astronomia.

Estudantes do 6° ao 9° ano do ensino fundamental de escolas públicas e privadas de todo o Brasil participam do nível 3 da MOBFOG, competem pelas medalhas que premiam os foguetes com maior alcance. Mas muito mais valiosos que a premiação são o espírito de colaboração e a oportunidade prática de aprendizado de conceitos de física, matemática e tecnologia aeroespacial proporcionados pela empolgante atividade.

Foguete nível 3 da MOBFOG 2023 de alunas do clube Meninas na Ciência, montado na plataforma de lançamento no campo do INPE em São José dos Campos para uma bateria de ensaios de avaliação. Após a análise dos voos, modificações foram realizadas para otimizar o desempenho dos foguetes!

Em São José dos Campos (SP) , um polo de pesquisa e desenvolvimento na área aeroespacial, os professores e estudantes de escolas públicas municipais ganharam o reforço de pesquisadores e técnicos do Instituto Nacional de Pesquisas Espaciais (INPE) e do Instituto de Aeronáutica e Espaço (IAE/DCTA) no planejamento e análise do voo dos foguetes.

Para visualizar a dinâmica de voo dos velozes foguetes, o Laboratório de Registro de Imagens do IAE registrou os lançamentos em vídeo de alta velocidade, a 1000 quadros por segundo, permitindo analisar em detalhes a fase inicial do voo e identificar falhas de construção que prejudicam o desempenho dos foguetes.

E o que podemos aprender com os foguetes da MOBFOG?

Captura de tela do software Tracker com o lançamento de um foguete nível 3 da MOBFOG. Os gráficos à direita são do deslocamento e da velocidade do foguete em função do tempo. [créditos LRIM/IAE]

Analisando os vídeos com o software de rastreio TRACKER (um programa aberto e gratuito!), podemos acompanhar o deslocamento do foguete quadro a quadro. Plotando em um gráfico o deslocamento em função do tempo temos uma representação visual de cada fase do voo, identificando a evolução da velocidade do foguete. O Tracker está disponível para download para os os sistemas operacionais Linux, Mac OS X e Windows ou pode ser executado online em sua versão em JavaScript.

Assim que o foguete é liberado e inicia seu movimento, vemos um aumento constante da velocidade. Em seguida, o foguete deixa a base e a velocidade passa a variar com uma taxa mais elevada, mas aproximadamente constante, até que toda a água em seu interior é liberada. A partir daí o foguete segue uma trajetória balística, sujeita apenas a ação da gravidade e da resistência do ar.

A geometria do foguete tem um papel importante em seu desempenho. A posição e o formato das empenas e a posição do centro de gravidade podem torná-lo mais ou menos instável e interferir no alcance máximo. A contribuição desses fatores fica evidente na análise de vídeo.

Mas a maior surpresa pode vir dos valores de velocidade máxima e aceleração que os pequenos foguetes de garrafas PET podem atingir. Acelerações de 100g e velocidades acima de 60m/s foram registradas! Isso reforça a necessidade da estrita observação das normas de segurança: uso de Equipamento de Proteção Individual (EPI), sinalização e isolamento da área de lançamento!

E se tudo for feito com segurança, os lançamentos são um excelente recurso prático para o aprendizado de conceitos físicos como velocidade, aceleração, empuxo, pressão, momento e para a interpretação de gráficos.

O que um All Star velho e Apollo 17 possuem em comum?

Julia Brazolim: Um tempo atrás um anúncio abalou uma esfera da internet pois uma marca super famosa lançou um tênis similar ao clássico All Star, mas um pouco mais… destruído e por um preço inaudível. As pessoas ficaram indignadas. Mas entrando ou não no âmago da arte desconstruída na moda, esses dias eu tive uma ideia que me custou apenas R$38. Vou dar um breve contexto.

Eu sempre gostei de comprar All Star, substituindo os pares ao longo dos anos. E certo dia, eu estava olhando pra um dos meus pares mais antigos e encontrei rasgos atrás. Como minha vontade em customizar coisas é muito alta, na hora tive a ideia de passar a fita Silver.

Julia usando o All Star após o uso da fita no tênis

Brevíssima história da Fita Silver

A Silver Tape ou a famosa fita prateada usada tão comumente em filmes de ação, seja pra prender alguém como refém ou pra prender dinamites, foi criada pela operária norte-americana Vesta Stoudt no início dos anos 40 durante a Segunda Guerra Mundial. Ela enfrentou um problemão durante o processo de embalagem das munições de armas para enviar pros soldados, já que não era prático abrir no meio da guerra e dificultava o carregamento no meio da batalha. Então, ela decidiu criar uma solução. Vesta enviou a ideia e o requerimento da produção da fita em uma carta pro então Presidente Franklin D. Roosevelt, que achou incrível e pediu pro Conselho de Produção de Guerra começar a produzir. Depois ela até ganhou um prêmio pela invenção e teve sua patente.

Foto de Vesta Stoudt. Créditos: The Chicago Sunday Tribune (24/10/1943) e Kilmerhouse

E não parou por aí. Exatamente por ser super eficiente já que a fita consegue colar em superfícies ásperas, lisas e irregulares, é feita com um tecido e também super prática pra rasgar até com a mão (ou uso dos dentes), Silver Tape passou a ser usada pela sociedade pra tampar buracos, dutos de aquecimento e tudo o que precisasse. Inclusive, numa missão espacial.

Uma fita. Uma missão. Apollo 17!

Wandeclayt: Um dos itens mais versáteis e úteis entre os aparatos levados a bordo das missões espaciais opera verdadeiros milagres em pequenos (ou não tão pequenos) reparos também aqui na Terra.

E afirmamos com tranquilidade que esse é o item mais poderoso no universo das gambiarras dos reparos emergenciais, capaz de sanar vazamentos, reparar estruturas, compor adaptações ou simplesmente remendar aquele confortável tênis velho ou aquele paralamas danificado do seu jipe lunar!

A multi talentosa fita prateada carrega em seu currículo, além do tênis All Star da Julia, a façanha de ter participado de uma adaptação que salvou a vida dos astronautas da Apollo 13 após uma explosão num tanque de oxigênio ainda a caminho da Lua e o mérito de ter garantido o cumprimento de todos os objetivos da Apollo 17, após um acidente que inviabilizaria a continuidade da exploração da bordo do jipe lunar.

Veja as fotos a seguir e olha como as fitas estão sendo usadas:

crédito: NASA (AS17-147-22526)
crédito: NASA (AS17-135-20542)
NASA (AS17-137-20979)

Julia: E é uma baita fita resistente! Como eu moro no litoral, meu receio era de que a areia tirasse a cola da fita e descolasse tudo. Mas não. Tá coladinha 🙂 Aqui um gif deu caminhando tranquilamente com o tênis:

E você? Qual foi o uso mais inusitado que você fez da fita Silver?

Esta publicação foi feita em collab com o projeto Missão Exoplaneta 🙂

Tesouros do Céu Austral.

No século XVII o astrônomo francês Charles Messier compilou um célebre catálogo de objetos astronômicos de aparência difusa, incluindo verdadeiras joias que até hoje atraem o fascinado olhar de astrônomos amadores ou os poderosos equipamentos de observatórios profissionais. Mas o catálogo de 110 objetos (alguns foram incorporados após a morte de Messier) nebulosos – que inclui a galáxia de Andrômeda (M31), a Grande Nebulosa de Órion (M42), a Nebulosa do Anel (M57) e outros objetos que povoam a calçada da fama da astronomia – deixa de fora alguns objetos belos e tão brilhantes que podem ser facilmente vistos através de pequenos telescópios, binóculos ou até a olho nu no céu do hemisfério sul.

Um céu ricamente estrelada, com uma faiza nebulosa cruzando a diagonal do canto inferior esquerdo até o canto superior direito. Há regiões mais densas, com concentrações de estrelas destacando-se e pequenas manchas coloridas variando do rosa ao azul distribuídas ao longo da diagonal esfumaçada.
A imagem acima mostra a riqueza do céu austral nas vizinhanças do Cruzeiro do Sul. Esta é uma exposição única de 30 segundos capturada com câmera DSLR numa montagem motorizada. Nenhuma técnica avançada de processamento de imagens astronômicas foi utilizada e a imagem reproduz aproximadamente a visão a olho nu sob um céu preservado da poluição luminosa (escala de bortle 8). [Imagem: Wandeclayt Melo/@ceuprofundo]

A explicação para a omissão desses objetos no catálogo Messier é simples: Vivemos numa Terra esférica e esses objetos não são observáveis a partir da Europa.
A exuberante nebulosa de Eta Carinae, o imponente aglomerado globular Omega Centauri e até galáxias inteiras como as Nuvens de Magalhães são um tesouro oculto para os habitantes das latitudes mais altas no hemisfério norte, mas se revelam em todo o seu esplendor para os olhos e telescópios do sul.

Mas para encontrar esses tesouros um primeiro passo é fundamental : Afaste-se da poluição luminosa das áreas urbanas. Busque áreas rurais ou suburbanas e evite qualquer iluminação excessiva apontada para o céu ou visível diretamente de seu ponto de observação. Quanto mais escuro o ambiente, melhor será a sua experiência e mais destacados os objetos astronômicos aparecerão, em contraste com o fundo do céu.

Agora, afastados da poluição luminosa, podemos iniciar a caça ao tesouro. Comece identificando a constelação de Crux, o Cruzeiro do Sul.
Visível de todo o Brasil e facilmente reconhecível mesmo em céus urbanos, o Cruzeiro do Sul é um excelente ponto de partida para iniciar o reconhecimento do hemisfério sul celeste. Após identificarmos o Cruzeiro e suas cinco estrelas mais brilhantes – as quatro estrelas nas pontas dos braços da cruz, mais a “intrometida” – encontramos a leste duas estrelas muito brilhantes: alfa e beta da constelação do Centauro, ou alfa e beta centauri.

Carta da região circunvizinha ao Cruzeiro do Sul, gerada com o software Cartes du Ciel (Sky Charts) versão 4.2.1. O software é aberto e gratuito e está disponível para download em https://www.ap-i.net/skychart/. Compare com a fotografia mais acima.

Utilizando uma boa carta celeste ou um aplicativo de celular (não vamos indicar nenhum aplicativo em particular, porque quase todos cumprem muito bem o seu papel) continue explorando o céu ao redor do Cruzeiro. Identifique mais a oeste as constelações de Carina e Vela. Ao sul, a Mosca. Veja também como a constelação do Centauro envolve a Cruz a leste, norte e oeste.

Se você estiver num local realmente escuro, olhando para essas regiões do céu, perceberá algumas manchas difusas no céu. Um longa faixa clara – a Via Láctea – se estende de leste a oeste. Pequenas regiões nebulosas pontuam essa faixa e são melhor percebidas se não as observarmos diretamente. Tente olhar para um ponto próximo e usar o canto do olho para perceber melhor essas manchinhas nebulosas. Essa técnica de visão periférica é algo que usamos também ao observar objetos mais tênues através da ocular do telescópio.

Você perceberá dezenas desses pontos. São nebulosas, galáxias e aglomerados estelares. Perceptíveis a olho nu como pequenas manchas, mas que revelam sua verdadeira natureza e todo seu esplendor quando observamos através de binóculos e telescópios.

Esse é um excelente primeiro passo na exploração dos tesouros do céu profundo ocultos no céu austral. Visite e revisite estes objetos e venha aqui compartilhar conosco!

Operação Astrolábio – Novos Rumos para Alcântara.

O Veículo HANBIT-TLV, montado na plataforma de lançamento CLS (Coalesced Launch System), durante a preparação para o lançamento na Operação Astrolábio. [imagem: INNOSPACE/@ceuprofundo]

Desde sua criação, o Centro de Lançamento de Alcântara (CLA), tem servido com excelência às demandas do Programa Nacional de Atividades Espaciais (PNAE), fornecendo infraestrutura e apoio ao lançamento dos veículos suborbitais brasileiros. Esta infraestrutura é fundamental para o programa brasileiro de experimentos em microgravidade, através do lançamento de veículos suborbitais nacionais. Brevemente o centro dará também suporte a operações nacionais de satelitização com o Veículo Lançador de Microssatélites VLM – em desenvolvimento pelo Instituto de Aeronáutica e Espaço (IAE) com participação da indústria nacional.

Área de Preparação e Lançamento do Centro de Lançamento de Alcântara – CLA

Posicionado numa posição privilegiada, com baixa densidade demográfica, baixo fluxo de tráfego aéreo, sem ocorrência de terremotos ou furacões e localizado apenas 2º ao sul da linha do equador – uma grande vantagem para inserção de satélites em órbitas de baixa inclinação – o CLA tem potencial para atrair também operadores internacionais de veículos espaciais. E este potencial começa a se materializar com a assinatura do contrato com a startup coreana INNOSPACE, para o primeiro lançamento de um veículo espacial privado nas instalações do CLA.

Este novo capítulo na história do CLA – a caminho da implementação do que será o Centro Espacial de Alcântara (CEA) – consolidará Alcântara como um importante espaçoporto internacional. As operações privadas no Centro, aumentarão a cadência de lançamentos, elevando o nível de prontidão e capacitação das equipes e meios utilizados nas atividades de apoio, preparação e lançamento de veículos espaciais. Um ganho valioso para o Centro, mas que também se reverte em fomento à indústria aeroespacial brasileira e ao desenvolvimento regional em Alcântara através da injeção de recursos na economia local e na geração de empregos diretos e indiretos.

O HANBIT-TLV posicionado verticalmente pela primeira vez na plataforma de lançamento. [imagem: INNOSPACE/@ceuprofundo]

Mas a inovação não vem somente na abertura do CLA a empresas privadas. A empresa INNOSPACE (que traz a inovação estampada em seu nome e em seu slogan: Innovation for Space. Space for Innovation.”) realiza na operação Astrolábio o primeiro teste de seu motor de propulsão híbrida HyPER15 – um motor com propelente sólido a base de parafina e oxigênio líquido como oxidante, capaz de produzir 150 quilonewtons de empuxo. A tecnologia inovadora permite construir motores simples, baratos e seguros com controle de empuxo, fundamentais para a inserção precisa de satélites em órbita. A qualificação do motor HyPER15 num voo suborbital do foguete HANBIT-TLV (Test Launch Vehicle) será a luz verde para o desenvolvimentos da família de lançadores de pequenos satélites (SSLV) HANBIT em suas versões Nano, Micro e Mini, atendendo a demanda atual do mercado espacial, por lançadores para satélites menores e mais leves e mais baratos.

Integração do veículo HANBIT-TLV no Prédio de Preparação de Propulsores do Centro de Lançamento de Alcântara. [imagem: INNOSPACE/@ceuprofundo]

Sobre a operação de lançamento, o Dr. Soojong Kim, CEO da INNOSPACE, revela seu entusiasmo:

Estamos muito empolgados para fazer nosso voo espacial inaugural aqui no Centro de Lançamento de Alcântara. Esse é um momento histórico para todos nós. É a primeira vez que uma empresa coreana realiza um lançamento fora de seu território e também somos a primeira empresa estrangeira lançando em território brasileiro. O HANBIT TLV é um lançador suborbital transportando uma carga útil brasileira e empregando um motor híbrido de 150 quilonewtons de empuxo – o maior a ser usado em um SSLV – e será lançado este mês. Estamos encantados pela beleza de Alcântara e pela hospitalidade brasileira, especialmente por parte da Força Aérea Brasileira e pelo governo do Brasil. Esperamos desenvolver essa relação e construir uma sólida parceria para nossas futuras operações.” Soojong Kim, CEO da INNOSPACE.

Aqui no Céu Profundo também estamos entusiasmados com a operação e seguiremos acompanhando a campanha de lançamento e manteremos informações atualizadas em nosso Twitter e no Instagram. Aproveite para nos seguir e não perder nenhum detalhe deste momento histórico.

Integração e testes do SISNAV (Sistema Inercial de Navegação), carga útil nacional embarcada no HANBIT-TLV e desenvolvida pelo Instituto de Aeronáutica e Espaço (IAE) – órgão do Departamento de Ciência e Tecnologia Aeroespacial (DCTA). [imagem: INNOSPACE/@ceuprofundo]
Teste de elevação do veículo HANBIT-TLV na Plataforma de Lançamento. Ao fundo, a TMI (Torre Móvel de Integração). [imagem: INNOSPACE/@ceuprofundo]
Transporte do HANBIT-TLV para a plataforma de lançamento CLS. [imagem: INNOSPACE/@ceuprofundo]
Equipe da INNOSPACE após a primeira instalação do HANBIT-TLV no lançador. [imagem: INNOSPACE/@ceuprofundo]

Cadê a Fosfina?

Imagem de Vênus, com espectro sobreposto, mostrando linhas de absorção do ozônio (O3) na atmosfera da terrestre e sem indicação da presença de fosfina (PH3). – [Imagem produzida por Wandeclayt M. com dados da espaçonave Messenger, durante seu segundo sobrevoo a Vênus em junho de 2007. A imagem é uma composição colorida RGB utilizando os canais de 433.2nm, 579.9nm e 748.7n do instrumento MDIS, capturados quando a nave passava a 66 mil km do planeta].

Em 2021, o anúncio da detecção de traços do gás fosfina (PH3) na atmosfera do planeta Vênus, apontada por dados do rádio observatório ALMA (Atacama Large Millimeter/submillimeter Array), causou euforia na comunidade científica.

Antenas do radio observatório ALMA (Atacama Large Millimeter/submillimeter Array) no norte do Chile. Com dados desde observatório, um grupo publicou em 2021 a descoberta de uma abundância acima da esperada de moléculas de fosfina na atmosfera de Vênus. [imagem: ESO/B. Tafreshi]

A abundância de fosfina reportada inicialmente (20 partes por bilhão) era anormalmente alta e sua origem não poderia ser facilmente explicada por processos conhecidos. A euforia vem do fato da fosfina ser um biomarcador – uma molécula que pode estar associada ao metabolismo de seres vivos – que na Terra é formada por matéria orgânica em decomposição, e seu excesso, se confirmado, poderia significar a presença de vida na atmosfera de Vênus. Uma hipótese ousada que precisaria de dados muitos robustos para suportá-la.

O trabalho de Martin Cordiner, do Goddard Space Flight Center, e colaboradores, aceito para publicação no periódico Geophysical Research Letters.

Mas os dados robustos não vieram. Após a divulgação do resultado, uma recalibração dos dados do ALMA levou a uma estimativa muito mais modesta: de 1 a 7 partes de fosfina por bilhão. Algo muito mais condizente com processos naturais, como atividade vulcânica e outros processos que não envolvem metabolismo de seres vivos.

Cuidadosas observações realizadas em seguida, pelo recém aposentado telescópio infravermelho SOFIA – um telescópio de 2.7m de diâmetro operando embarcado em um Boeing 747 modificado da NASA – deram origem a um trabalho publicado por Martin Cordiner do Centro Espacial Goddard, e colaboradores, estabelecendo um limite superior para a abundância de fosfina venusiana: a substância não foi detectada, e caso ela esteja presente na atmosfera do planeta, não deve exceder as 0.8 partes por bilhão na faixa entre 75 e 110 km de altitude.

SOFIA (Stratospheric Observatory for Infrared Astronomy) – Um telescópio infravermelho de 2,7m de diâmetro (2,5m de diâmetro útil), aerotransportado em um Boeing 747 adaptado. Uma cooperação entre as agências espaciais dos EUA (NASA) e Alemanha (DLR).

Durante sua vida útil, o observatório SOFIA operou em uma condição privilegiada: voando entre 38000 e 44000 pés de altitude, seu telescópio se colocava acima de 99% da atmosfera terrestre e de seus efeitos na absorção da reveladora radiação infravermelha. Sua mobilidade também era uma grande vantagem, permitindo observar eventos transientes como eclipses e trânsitos de objetos do Sistema Solar, mesmo quando esses só fossem visíveis sobre o oceano ou outras regiões onde não há observatórios.

Os dados do SOFIA vão na direção do que muitos esperavam e reforça a ideia de que o resultado publicado em 2021 foi fruto de dados mal calibrados. Este é um processo comum na ciência: um trabalho pode chegar em conclusões incorretas por falhas em seus métodos ou em seu conjunto de dados, mas análises e novas observações posteriores podem mostrar essas inconsistências e corrigir esses resultados.

Operação Santa Branca – Sucesso no Lançamento de Foguete VSB-30 em Alcântara.

Foguete VSB-30 é lançado com sucesso a partir do Centro de Lançamento de Alcântara (CLA) na Operação Santa Branca. Este é o 6º VSB-30 lançado a partir do CLA. [imagem: Divulgação/Agência Espacial Brasileira/Força Aérea Brasileira].

Menos de 12 meses após o sucesso da Operação Cruzeiro, que realizou o primeiro voo do projeto de veículo hipersônico 14-X, acelerado por um foguete VSB-30 realizando a função de Veículo Acelerador Hipersônico (VAH), a Força Aérea Brasileira (FAB) e a Agência Espacial Brasileira (AEB) anunciam o sucesso de mais uma operação no Centro de Lançamento de Alcântara.

O VSB-30 é um veículo suborbital de dois estágios, da família de foguetes de sondagem brasileiros, com capacidade para transportar cargas úteis de até 400kg em voos com apogeu nominal de 250 km com tempo de voo superior a 6 minutos acima dos 100km de altitude, conforme dados do Programa Nacional de Atividades Espaciais (PNAE) 2012-2021 e de apresentação do DCTA no COPUOS – Comitê das Nações Unidas para o Uso Pacífico do Espaço (2014).

O veículo VSB-30 deixa o lançador para o voo do qualificação da Plataforma Suborbital de Microgravidade (PSM). [imagem: Divulgação/Força Aérea Brasileira/Agência Espacial Brasileira]

O VSB-30 é o primeiro veículo espacial brasileiro a receber certificação de tipo, garantindo confiabilidade e rastreabilidade nos processos de produção deste foguete que além de atender o programa espacial brasileiro é utilizado pelo DLR (Centro Aeroespacial Alemão) para lançamentos suborbitais que atendem o programa europeu de experimentos em ambiente de microgravidade, substituindo os foguetes britânicos SKYLARK, descontinuados em 2005. A gerência do projeto VSB-30 cabe ao Instituto de Aeronáutica e Espaço (IAE), subordinado ao Departamento de Ciência e Tecnologia Aeroespacial (DCTA). O IAE é responsável pela preparação e integração do veículo, pelo carregamento dos motores, por toda a campanha de ensaios e pela coordenação geral e técnica da operação.

A Operação Santa Branca


De acordo com a AEB a Operação Santa Branca tinha como objetivo qualificar em voo a Plataforma Suborbital de Microgravidade produzida pela empresa brasileira Orbital Engenharia. Com a nacionalização deste componente, o veículo VSB-30 passa a ser um foguete 100% nacional e garante autonomia para que o Brasil ofereça este serviço para clientes que necessitem voos suborbitais que proporcionam 6 minutos em ambiente de microgravidade .

Conversamos com representantes da AEB, do INPE e da Orbital Engenharia sobre o sucesso da missão e sobre sua importância para o Programa Espacial Brasileiro e para a independência científica e tecnológica do Brasil.

Presidente da Agência Espacial Brasileira, Coronel Carlos Moura, inspeciona a carga útil recuperada após o voo do VSB-30 na Operação Santa Branca. [imagem: Divulgação/AEB].

No bicentenário da Independência, buscamos a Independência no espaço.

Sobre a importância da nacionalização de todos os componentes do VSB-30, o presidente da AEB, Coronel Carlos Moura nos conta : “O Programa Nacional de Atividades Espaciais (PNAE 2022-2031) preconiza a busca da “não dependência”. Portanto, desenvolver, no País, a capacidade de conceber, projetar, produzir e operar os componentes e os sistemas do VSB-30 alinha-se com esse objetivo. Traz mais flexibilidade para a realização de operações de forma autônoma e amplia a possibilidade de o Brasil participar do mercado espacial com seus institutos de pesquisa e desenvolvimento e o setor privado.

O presidente da AEB ressalta ainda a importância do programa de microgravidade para o desenvolvimento da ciência nacional e para impulsionar a indústria aeroespacial brasileira: “O Brasil é um dos poucos países com capacidade de realizar operações suborbitais em ambiente de microgravidade (imponderabilidade). O Programa de Microgravidade, conduzido pela AEB, é uma maneira de fomentar a participação de nossas instituições nesse segmento, tanto para pesquisas científicas, como para desenvolvimentos tecnológicos. Há interesse nacional e internacional nesse tipo de experimentação em microgravidade, como, por exemplo, pelo setor de fármacos. Assim, uma vez estabelecida a capacidade interna de organizar e realizar operações desse tipo, empregando veículo e infraestrutura de solo nacionais, fica-nos viável promover a inserção do País no mercado internacional via, principalmente, a exploração dessas atividades pelo setor privado.

Dr. Chen (INPE) analisa o experimento SLEM (Solidificação de Ligas Eutéticas em Microgravidade) após voo da Operação Santa Branca. [Imagem: Divulgacão/Força Aérea Brasileira/INPE]

A Carga Útil


O Dr. Chen An, da Divisão de Materiais do INPE nos conta que o voo do VSB-30 permite a “realização de experimentos em condições de microgravidade (imponderabilidade) para o estudo de fenômenos físicos sem a ação resultante da força da gravidade terrestre“. O Dr. Chen é o coordenador de um experimento embarcado como carga útil na Operação Santa Branca. O SLEM (Solidificação de Ligas Eutéticas em Microgravidade) é um experimento que realiza a fusão de metais em um forno embarcado no foguete e em seguida solidifica a amostra durante o período em que o veículo atinge as condições de microgravidade.

O sucesso na qualificação da PSM foi o elemento determinante para atingir as condições de voo requeridas pelo experimento do Dr. Chen. Após o voo, com apogeu de 227km, o êxito na recuperação da carga útil depois de sua queda no oceano a 185km da costa permitiu o resgate do experimento, garantindo a possibilidade de análise em laboratório das amostras solidificadas em microgravidade.

Sobre a PSM, conversamos com Célio Vaz, Diretor da Orbital Engenharia que nos conta: “A Plataforma Suborbital de Microgravidade PSM, possui a função de viabilizar a realização de experimentos científicos e tecnológicos no espaço, em um ambiente, proporcionado pela própria plataforma, que chamamos de microgravidade. A PSM representa um marco importante no desenvolvimento das tecnologias espaciais no Brasil, pois ela torna possível a nosso País realizar pesquisas no espaço de modo independente e, também, oferecer estes serviços no mercado internacional.

Ações de Educação e Divulgação Científica.

Além das ações diretamente ligadas ao lançamento, o Plano Nacional de Atividades Espaciais prevê ainda ações de sensibilização da opinião pública em relação à temática espacial. Neste sentido, nós do Projeto Céu Profundo demos nossa contribuição conduzindo sessões de observação telescópica em escolas e na Praça da Matriz, no centro histórico de Alcântara, complementando a programação de palestras ministradas por representantes da AEB, do INPE e da Secretaria de Educação de Alcântara.

O Projeto Céu Profundo em parceria com a Escola Caminho das Estrelas e o Museu Histórico de Alcântara promoveu duas noites de observação do céu, apresentando os planetas Júpiter e Saturno através de telescópios num evento aberto à comunidade na Praça da Matriz em Alcântara – MA. O evento teve participação da AEB, do INPE e da Secretaria Municipal de Educação de Alcântara.
A notável presença de público nas duas noites de observação conduzidas pelo Projeto Céu Profundo e viabilizadas pela Escola Caminho das Estrelas e pelo Museu Histórico de Alcântara evidenciam o interesse por da população de Alcântara por temas espaciais.

A complexa operação de lançamento envolveu diversas organizações, a começar pelo Centro de Lançamento de Alcântara (CLA), sede da operação, e incluindo o IAE (fabricante do veículo), IFI (órgão de certificação), Centro de Lançamento da Barreira do Inferno (rastreio radar), Orbital (fabricação da PSM), INPE (experimento embarcado), os esquadrões aéreos 1º/8ºGAv e 7º/8º GAv (recuperação da carga útil), 3º/7º GAv (esclarecimento e patrulha) e do PARA-SAR (recuperação da carga útil).

A sinergia no operação conjunta de todos esses atores evidencia que o Espaçoporto de Alcântara tem plena capacidade de oferecer com segurança e excelência serviços de infraestrutura e apoio para lançamentos espaciais, trazendo para o Brasil a possibilidade de exploração de um crescente e exigente mercado na Nova Era Espacial.

ALERTA DE BOATO: O que é o Afélio?

Se você não recebeu uma bizarra mensagem falando sobre um nefasto “Fenômeno APHELION” em algum grupo do whatsapp, provavelmente ainda vai receber.

Captura de tela da mensagem FALSA que diz "A partir de amanhã, às 5:27, vivenciaremos o fenômeno aphelion, onde a Terra estará muito distante do Sol. Não podemos ver o fenômeno, mas podemos sentir seu impacto. Isso vai durar até agosto. Teremos um clima frio mais do que o clima frio anterior, o que afetará a gripe, tosse, falta de ar, etc. A distância da Terra ao Sol é de 5 minutos-luz ou 90 milhões de km. O fenômeno do afélio a 152 milhões de km."
A mensagem com conteúdo falso que tem circulado no whatsapp usando o termo astronômico em inglês Aphelion e com informações distorcidas.

O boato pega carona em um termo astronômico e segue destilando alarmismo e pedindo compartilhamento! Mas o que é realmente o afélio (é esse o termo em português)? E tem ele algum efeito perceptível no clima?

A órbita terrestre, como a de todos os planetas, é uma elipse, ou seja, um círculo um pouco alongado. E por ser alongada, a órbita possui um ponto mais próximo ao Sol, que chamamos de periélio, e um ponto mais distante, que chamamos de afélio. O afélio não é, portanto, um fenômeno, mas apenas um ponto de nossa órbita por onde passamos todos os anos. O boato também passa longe da realidade quando diz que o afélio vai durar de “amanhã” (não há data na mensagem) até agosto. O afélio é apenas um ponto na órbita e não um fenômeno duradouro. Em 2022 passaremos por esse ponto no dia 4 de julho. E em 4 de janeiro, passamos pelo outro ponto importante, o periélio. Mais informações sobre essas datas podem ser encontradas no site Time and Date.

A órbita da Terra, em azul na imagem, é quase circular e distância da Terra ao Sol varia apenas 1,7% em relação à média, como visto nesse gráfico gerado pelo visualizador de órbitas do Laboratório de Propulsão a Jato (JPL) da NASA. Ao contrário das órbitas de Mercúrio – a mais interna no gráfico – e a de Marte – a mais externa – que possuem excentricidade considerável. (https://ssd.jpl.nasa.gov/tools/orbit_viewer.html)

A mensagem acerta na distância em que a Terra se encontra do Sol no afélio (152 milhões de km), mas usa um valor absurdamente menor (e errado!) para o periélio, fazendo parecer que no afélio estamos muito mais distantes do Sol do que no resto do ano. Na verdade, a variação entre a distância média da Terra ao Sol e a distância no afélio e no periélio é de apenas 1,7% – o que é completamente imperceptível na prática. Os valores na tabela abaixo foram extraídos da Tabela de Dados Planetários do Centro Espacial Goddard da NASA e os valores da distância média ao Sol e do afélio e periélio da Terra estão destacados. Note que o valor de 90 milhões de km, atribuído ao periélio na mensagem, nos colocaria dentro da órbita de Vênus!

 Mercúrio  Vênus  Terra Marte Júpiter  Saturno  Urano  Netuno 
Distância Média ao Sol (106 km)57.9108.2149.6228.0778.51432.02867.04515.0
Periélio (106 km)46.0107.5147.1206.7740.61357.62732.74471.1
Afélio (106 km)69.8108.9152.1249.3816.41506.53001.44558.9
Excentricidade Orbital0.2060.0070.0170.0940.0490.0520.0470.010
Parâmetros orbitais dos planetas do Sistema Solar. fonte: https://nssdc.gsfc.nasa.gov/planetary/factsheet/

Vale lembrar também que não é o afélio que causa o inverno. Em julho, quando estaremos no inverno do hemisfério sul, será pleno verão no hemisfério norte.

As estações do ano são um efeito da inclinação do eixo de rotação da Terra em relação à sua órbita, que expõe mais diretamente um hemisfério aos raios solares do que o hemisfério oposto, de acordo com a época do ano.

Verão no Hemisfério Sul
No verão do hemisfério sul, os raios do Sol atingem mais diretamente nosso hemisfério e permanecemos iluminados por mais tempo. Os dias são mais longos e as noites são mais curtas. Ao mesmo tempo, o hemisfério norte recebe menos luz solar. A imagem acima foi produzida pelo observatório DSCOVR e mostra a face iluminada da Terra no dia 21 de dezembro de 2020. A linha tracejada marca o equador, dividindo os hemisférios. (crédito: DSCOVER/EPIC)
No inverno do hemisfério sul, os raios do Sol chegam mais inclinados ao nosso hemisfério e permanecemos iluminados por menos tempo. Os dias são mais curtos e as noites são mais longas. Ao mesmo tempo, o hemisfério norte recebe mais luz solar. A imagem acima foi produzida pelo observatório DSCOVR e mostra a face iluminada da Terra no dia 21 de junho de 2020. A linha tracejada marca o equador, dividindo os hemisférios. (crédito: DSCOVER/EPIC)

Esperamos que com esses dados e referências todos sejam capazes de ajudar a freiar mais um boato de rápida circulação nos grupos de whatsapp e possam ajudar a espalhar a boa ciência. Podem compartilhar este artigo sem moderação e estamos sempre prontos para tirar dúvidas em nossas redes sociais: sigam www.twitter.com/ceuprofundo e www.instagram.com/ceuprofundo.

Lua: Mares, oceanos e baías numa superfície desértica.

A face visível da Lua é marcada por vastas planícies escuras que contrastam com o terreno mais claro e mais acidentado do restante da superfície lunar. Apesar de não haver água no estado líquido na superfície da Lua, essas regiões recebem o nome de oceanos, mares, lagos e baías.

O mares lunares são na verdade um deserto seco e correspondem a regiões inundadas pelo basalto originado na atividade vulcânica lunar (https://doi.org/10.1029/2000JE001244) no período compreendido entre 4 e 1,1 bilhões de anos atrás(aqui é bom lembrar que no português brasileiro 1 bilhão equivale a 1.000.000.000).

A face visível da Lua (imagem da esquerda) e seu lado oculto (à direita) em mosaico composto por imagens da Lunar Reconnaissance Orbiter [crédito: NASA]

Por se tratar de regiões mais jovens do terreno, os mares exibem menos crateras de impacto que as regiões mais antigas e elevadas. Além disso, os mares possuem albedo mais baixo, refletindo menos luz e parecendo mais escuros, destacando-se – mesmo a olho nu – contra o terreno mais claro.

Os primeiros mapas a nomear acidentes do relevo lunar datam do século XVII e já registravam as planícies basálticas como mares e oceanos. Os mapas de Langrenus (1645), Hevelius (1647) e Riccioli (1651) traziam denominações distintas para os mares e para as demais formações da topografia da Lua. O sistema adotado por Riccioli é o que mais se aproxima da nomenclatura moderna, padronizada pela União Astronômica Internacional a partir da aprovação do mapa e catálogo Named Lunar Formations compilado por Mary Blagg e Karl Müller e publicado em 1935.

Mapa da Lua publicado em 1645 por Michael von Langren, o primeiro a atribuir nomes a formações da topografia lunar.
Mapa da Lua de Johanes Hevelius, publicado em 1647 na obra Selenographia.
Mapa lunar desenhado por Grimaldi e publicado por Giovanni Battista Riccioli no Almagestum Novum em 1651 [ETH-Bibliothek Zürich ]

O atlas de Blagg e Müller foi um primeiro passo na universalização da nomenclatura lunar, mas o aumento da resolução das fotografias lunares capturadas em telescópios terrestres e o mapeamento do lado oculto da Lua por espaçonaves exigiu sucessivas atualizaçoes nos mapas lunares nas décadas seguintes. Um curioso episódio seguiu o envio das primeiras imagens da face oculta da Lua pela sonda soviética Luna 3. Os cientistas soviéticos batizaram uma das raras planícies basálticas naquele lado da Lua de Mare Moscoviense, quebrando a tradição de nomear mares com nomes relacionados a àgua (Mar das Chuvas, Oceano das Tempestades…) ou a estados de espírito (Mar da Tranquilidade, Mar da Serenidade…) para o desconforto dos mais apegados à nomenclatura histórica.

A Assembleia Geral da União Astronômica Internacional (IAU General Assembly) de 1961 estabeleceu que além das regras em voga, ficasse estabelecido que: “Grandes áreas escuras são designadas por denominações em latim referentes a estados de espírito. Estes nomes são associados, de acordo com as regras de declinação e grafia do latim, aos substantivos apropriados: Oceanus, Mare, Lacus, Palus or Sinus. (As exceções Mare Humboldianum e Mare Smythii são mantidas, por estarem consagradas pelo uso). “

“Large dark areas are designated in Latin denominations calling up psychic states of minds. These names are associated, according to the Latin declination ruIes and spelling, to one of the appropriate substantives: Oceanus, Mare, Lacus, Palus or Sinus. (The exceptions, Mare Humboldianum and Mare Smythii, are preserved, due to long usage).” [XIth General Assembly. Berkeley, USA 1961]

A solução para o impasse soviético veio daí! Reza a lenda que o astrônomo Aldouin Dollfus, muito diplomaticamente, estabeleceu que o nome Mare Moscoviense estava de acordo com a regra, porque Moscou é um “estado de espírito”.

Mapa topográfico da Lua criado a partir de dados da sonda chinesa Chang-E1.

Cometa Leonard, onde está você?

Poluição luminosa, pouca elevação acima do horizonte, nuvens, poluição atmosférica e pouco brilho. Esse quinteto sinistro está sendo muito competente para dificultar a observação do esperado cometa C/2021 A1 (Leonard) nesta última quinzena de 2021. Em quase todo o Brasil, observadores reportam dificuldades para encontrar, observar e registrar em imagens o cometa mais brilhante do ano. Mas a insistência pode ser recompensadora. Uma breve trégua entre as nuvens, um pouco de habilidade e conhecimento do céu e alguma dose de sorte podem resultar em boas experiências para os que observam com binóculos e pequenos telescópios e para os perseverantes astrofotógrafos ávidos pela captura de uma visão do astro nebuloso.

Cometa Leonard se pondo em meio ao brilho do céu produzido pela poluição luminosa da cidade de Jacareí (SP), localizada por trás dos morros no horizonte, em 23/12/2021. [Wandeclayt M./Céu Profundo]

Nossas primeiras imagens do Leonard foram capturadas através de telescópios remotos, no hemisfério norte, entre outubro e o início de dezembro, mas a grande expectativa era por poder observá-lo através da ocular e por capturar imagens localmente, com a mão na massa nas câmeras e telescópios. Muito planejamento, equipamentos a postos e uma espera que pode se tornar angustiante são os ingredientes da busca pelo cometa.

Em nossa fase de planejamento, criamos um software que plota o deslocamento do cometa dentro de um período, baseado nos dados de posição disponíveis na central de efemérides de corpos do Sistema Solar do Laboratório de Propulsão a Jato da NASA. Entre os dias 20 e 30/12, o cometa segue a trajetória plotada em azul no diagrama abaixo, cruzando a constelação do Microscópio.

Diagrama de localização do Cometa Leonard no período de 20 a 30/12/2021. Vênus e o Sol estão representados no mesmo período para referência. [Céu Profundo]

Muitas vezes, apenas uma análise posterior dos dados revela a presença do objeto esperado. Sem binóculos ou telescópios e apenas munidos de câmera, objetiva de 85mm e montagem motorizada, fizemos imagens do céu de Alcântara (MA) ainda sob a luz do crepúsculo na sexta 17/12, pouco antes das nuvens obstruírem completamente a visão sob o horizonte oeste. Apesar do aparente insucesso, a imagem ampliada revela a presença do Leonard!

A Linha que Separa a Insistência da Teimosia.

Nos dias seguintes a meteorologia seguiu inclemente, mas, entre as nuvens, o observamos através de um telescópio newtoniano de 200mm f/6, com ocular de 26mm, na terça-feira (21/12). Em nossa primeira observação telescópica a impressão foi de que o amarelo da cauda de poeira predominava e pouco percebemos do esverdeado da coma. Nas imagens desse dia, problemas de alinhamento e vibração na montagem motorizada EQ-5 arruinaram todas as imagens capturadas quando o Leonard ainda se encontrava numa posição mais alta no céu, as primeiras imagens aproveitáveis só vieram quando ele se aproximava do horizonte, em frames com exposição entre 20s e 30s com objetiva de 300mm foi possível revelar o belo, porém tímido, visitante interplanetário.

O cometa C/2021 A1 (Leonard) no dia 20/12/2021, em imagens capturadas com o cometa já baixo no horizonte. [Wandeclayt M./Céu Profundo].

Neste dia não conseguimos percebê-lo a olho nu, apesar de ser razoavelmente fácil identificá-lo na buscadora do telescópio e nas imagens de grande campo. Observadores em sítios completamente escuros, afastados da poluição luminosa das áreas urbanas podem ter sido mais felizes nesse aspecto, e aqui deixamos nossa recomendação: conheça os problemas causados pela poluição luminosa – que não se restringem à observação do céu – e as suas soluções. A rede Céus Estrelados do Brasil é um excelente ponto de partida para quem quer entender o problema.

A Apoteose!

Mas a grande recompensa para a nossa teimosia chegou! Na noite de 23/12 um surto de brilho, aliado a uma posição bem mais favorável para a observação, com o cometa mais alto em relação ao horizonte, nos trouxe o que tanto esperávamos: observamos o Leonard a olho nu! E conseguimos imagens que revelam filamentos da cauda de íons em meio a cauda de poeira e exibem uma região central muito brilhante, envolvida pelo verde característico da cabeleira. Um presente de Natal antecipado para olhos sedentos por uma visão do cometa do ano!

Glossário

  • Coma (ou Cabeleira) – É o envoltório de gás que circula o núcleo. Pode medir dezenas de milhares de quilômetros de diâmetro.
  • Periélio – É o ponto da órbita mais próximo do Sol. O cometa Leonard atingirá o periélio em 03/01/2022.
  • Montagem Motorizada – Para fazer imagens de longa exposição, astrofotógrafos utilizam aparatos que compensam a rotação da Terra, mantendo a câmera e o telescópios apontados para o mesmo objeto.
  • Telescópio Newtoniano – É o tipo mais comum de telescópio refletor. Em vez de lentes, sua objetiva é um espelho côncavo.

Seguindo o cometa C/2021 A1 (Leonard)

O cometa C/2021 A1 (Leonard) atinge o periélio – o ponto de sua órbita mais próximo ao Sol – no dia 3 de Janeiro de 2022, e ao se aproximar deste ponto, o cometa – assim como qualquer objeto se deslocando em órbita ao redor do Sol – move-se mais rapidamente.

Esta é uma das características do movimento orbital descrita pelas leis de Kepler (1571-1630) e posteriormente explicadas pela teoria gravitacional de Isaac Newton (1643-1727). Isto significa que objetos em órbitas circulares se movem uniformemente, mas objetos em órbitas alongadas se movem muito mais rapidamente nas proximidades do Sol do que quando estão afastados. É por isso que a posição de cometa no céu, quando ele adentra as regiões mais centrais do Sistema Solar, muda tão rapidamente e esse deslocamento pode ser percebido mesmo em alguns minutos de observação, principalmente quando registrado em imagens.

Criamos a carta celeste indicando o deslocamento do cometa Leonard num período de um mês antecedendo o periélio e plotamos também as posições do Sol e de Vênus durante este período. Use esta carta como uma referência rápida para planejar suas observações.

Cometa Leonard na manhã de 30/12/2021 imageado por nossa equipe, utilizando telescópio remoto no Novo México (EUA). [Wandeclayt M./Céu Profundo]

Mas se a ideia é apontar seu telescópio com precisão para fotografar o cometa com câmeras CCD de campo estreito, você pode gerar uma tabela de efemérides usando o serviço Horizons do JPL (Jet Propulsion Laboratory) no endereço: https://ssd.jpl.nasa.gov/horizons/app.html#/

Outra opção é utilizar o software de simulação e visualização Stellarium. Pra acrescentar o cometa Leonard ao banco de objetos do Stellarium, utilize o nosso tutorial em vídeo: