Como Escolher um Telescópio

A aquisição mais procurada por entusiastas da observação do céu é definitivamente o primeiro telescópio. Instrumentos ópticos de qualidade infelizmente não são tão baratos, e não é raro que a frustração em mexer em um telescópio desnecessariamente complicado para um iniciante acabe o transformando num cabide de roupa no meio da sala. Por isso, escrevemos um guia para ajudar nos detalhes que precisam ser considerados ao se adquirir sem arrependimentos o primeiro telescópio, com dicas de fabricantes nacionais:

Primeira regra de ouro: aprenda o céu da sua região! Quanto mais você souber sobre os objetos que quer e pode ver, mais informação terá para auxiliar na escolha do modelo ideal. Aplicativos gratuitos de cartas celestes e simulação do céu: Stellarium, Carta Celeste, Sky Map. Para conferir a poluição luminosa da sua região: https://www.lightpollutionmap.info/. Além disso, observe se há muitas obstruções no horizonte como prédios e montanhas.

Captura de tela do aplicativo Stellarium.

Informe-se MUITO sobre os tipos de telescópios amadores e como funcionam. Você descobrirá que existem diversos modelos e a partir daí pode começar a refinar a sua procura de acordo com seu orçamento, necessidades e limitações. Já fizemos um post sobre os tipos de telescópios aqui: http://ceuprofundo.com/2020/12/31/conhecendo-os-tipos-de-telescopio/

Which Telescope Is Better: A Reflector Or Refractor?
Alguns tipos de telescópios. (Fonte: Astronomy Trek)

Há outras questões além do céu que devem ser consideradas, como se o telescópio precisa ser leve e prático para ser transportado (a casa tem escadas, por exemplo?) e quanto espaço há disponível para observação e para guardar o equipamento.

Binóculos são uma excelente opção para começar a prática da observação. Possuem preços mais acessíveis e são de fácil manuseio, permitindo que a observação e o estudo do céu sejam suas únicas preocupações no início.

“Até onde esse telescópio vê?”

O telescópio não trabalha com limites de distância, mas sim de brilho. Quanto mais brilhante o objeto aparece no céu, mais nítida será a imagem dele. Há objetos na nossa própria galáxia mais difíceis de observar do que outras galáxias.

Pense no telescópio como um balde de coletar luz para os nossos olhos. Quanto maior for o diâmetro do telescópio, mais luz ele captura e, consequentemente, mais definição e objetos menos brilhantes é possível ver com ele. O pessoal do DeepSkyWatch fez uma comparação muito boa entre os objetos vistos por diferentes telescópios e céus: http://www.deepskywatch.com/Articles/what-can-i-see-through-telescope.html.

Um dos recursos do Stellarium é a simulação de telescópios, no menu superior direito, com o qual é possível ter uma ideia de como um objeto aparece na imagem de acordo com as configurações do telescópio que você estiver considerando adquirir.

Captura do programa Stellarium. A opção de simulação de telescópios está circulada em vermelho.
Simulação do Aglomerado da Borboleta visto por um telescópio de 254mm de diâmetro e 1130mm de distância focal, com uma ocular de 25mm.

Além da imagem

O telescópio é composto por diversas partes. Uma delas é a montagem, a parte do telescópio que fica encaixada entre o tubo e o tripé – ela não é soldada, o que significa que você pode trocá-la por outra a qualquer momento.

No modelo azimutal, o telescópio fica livre para se movimentar para todos os lados, não tem segredo. O modelo equatorial tem vantagens, mas com um preço: é mais robusta de se manuear e tem movimentação mais trabalhosa.

Claro que todo mundo tem capacidade de aprender a usar a montagem equatorial! Mas se você for iniciante, talvez queira investir mais tempo explorando o céu do que se preocupando com montagens robustas e caras que talvez sejam desnecessárias para você no início. Recomenda-se começar com a mais simples (azimutal) e substitui-la no futuro caso seja uma necessidade do observador.

Image
Exemplos de montagens de telescópios.

Todo telescópio precisa de pelo menos uma ocular. Preste atenção se o telescópio já vem com uma ou se é vendida separadamente. São facilmente intercambiáveis e podem ser compradas em kit ou avulsas a qualquer momento. Não precisa comprar um lote inteiro de cara sem saber se são compatíveis com padrão do telescópio e se serão úteis para você.

Diferentes oculares. (Fonte: Wikipedia)

“Qual o aumento desse telescópio?”

A rigor, o telescópio aumenta o quanto você quiser. PORÉM, quanto maior o aumento, menor será a nitidez e qualidade da imagem. O termo utilizado é AUMENTO ÚTIL, que significa o quanto é possível aumentar a imagem sem que ela perca muita qualidade. Para calcular o aumento útil, multiplique o diâmetro do telescópio por 2.

O aumento depende também da ocular, e a conta é simples: distância focal do telescópio dividida pela distância focal da ocular. Sempre faça essa conta antes de comprar uma ocular. Se o resultado for maior que o aumento útil, há grande chance de se frustrar.

Image
Exemplo de diferentes aumentos e cálculo da magnificação. (Crédito: André Luiz da Silva)

No nosso exemplo do Aglomerado da Borboleta, temos um aumento de 1130mm/25mm = 45,2x.

CUIDADO com anúncios que prometem demais: “aumenta até 400x, 500x, 1000x!”. Se vir esse tipo de sensacionalismo, ligue o desconfiômetro na mesma hora. Anúncios ideais não prometem imagens perfeitas e mostram todas as especificações do telescópio sem rodeios.

Image

Marcas com boa qualidade e sem enganação com o consumidor: Celestron, Sky-Watcher, Orion, Meade, GSO.

Hoje, temos excelentes fabricantes brasileiros(!!!): Dario Pires, Sebastião Santiago Filho, Sandro Coletti, Rodolfo Langhi, Telescópios Matão. Os telescópios desses fabricantes são tão bons quanto os importados, e duram anos se você cuidar deles com carinho e do modo adequado.

Imagens Astronômicas: Os Pilares da Criação.

Os pilares da Criação. Uma região de formação estelar a cerca de 7000 anos luz, na Nebulosa da Águia (M16) em imagem composta a partir de dados de observações do telescópio Hubble.

Uma das imagens mais marcantes produzidas pelo telescópio espacial Hubble é o registro dos Pilares da Criação, uma vasta região de formação estelar na Nebulosa da Águia (M16).
Sua imagem mais famosa é composta por dados de observações realizadas pelo Hubble através de filtros que deixam passar apenas a luz nas frequências das emissões dos gases enxofre, hidrogênio e oxigênio ionizado.


Os detalhes visíveis nas colunas de hidrogênio molecular e o esplendor das cores na imagem processada são impressionantes e cativam a atenção de qualquer observador.
Mas hoje queremos mergulhar no interior dos Pilares e enxergar através do gás frio. Para isso, a solução é observar através de filtros que deixam passar apenas os comprimentos de onda mais longos da luz, na faixa dos raios infravermelhos, para os quais o telescópio Hubble também é sensível. O resultado é um belo complemento ao que temos na luz visível e revela o que se esconde sob o gás!

Mosaico dos Pilares da Criação, região de formação estelar na Nebulosa da Águia (M16) composto com dados de observações do telescópio Hubble na faixa infravermelha do espectro eletromagnético. [Dados: NASA/ESA/Hubble/STScI. Processamento: Wandeclayt M./Céu Profundo]
Gráficos de desempenho dos filtros opticos do telescópio Hubble no infravermelho. A observação da imagem anterior foi realizada pelo canal IR da câmera WFC3 (Wide Field Camera 3) do telescópio Hubble, utilizando o filtro F110W, um filtro optico que deixa passar apenas a radiação infravermelha na faixa entre 0.9 e 1.4 µm. [crédito: Space Telescope Science Institute (STScI)]

Para compor a imagem usamos o software gratuito SAO Image DS9. Disponível para os sistemas operacionais Linux, Mac OS X e Windows (download aqui).

Vamos agora ver como chegamos no resultado acima a partir das observações individuais.
O campo do sensor infravermelho na câmera WFC3 do Hubble registra uma área do céu de menos de 3 minutos de arco (isso é 10 vezes menor que o diâmetro aparente da Lua vista da Terra). Por isso, para enxergarmos toda a área dos pilares (que na verdade medem aproximadamente 5 anos-luz) precisamos reunir várias peças em um quebra cabeças.
A tarefa é razoavelmente simples, porque as imagens registram também as informações das coordenadas celestes da região observada e essa informação pode ser utilizada pelo DS9 para alinhar e unir corretamente as imagens em um mosaico.

Interface de busca da base de dados do Telescópio Hubble. Parâmetros: Target Name = M16, Radius (arcmin) = 10, Imagers = WFC3, Proposal ID = 13926, Filter/Gratings = F110W.

Buscaremos na interface de pesquisa (https://archive.stsci.edu/hst/search.php) arquivos de dados de imagem da nebulosa M16 (Target Name) num raio de 10 minutos de arco (Radius (arcmin)) , capturados com a câmera WFC3, através do filtro infravermelho de banda larga F110W (Filter/Gratings), dentro da proposta de observação 13926 (Proposal ID). Sugerimos a seleção, na janela seguinte, da extensão ‘drz‘, requisitando assim apenas arquivos calibrados e com geometria corrigida. Os arquivos serão disponibilizados em uma pasta num servidor ftp no link enviado para o email fornecido. O conjunto de imagens que requisitamos é composto pelas quatro imagens abaixo.


O sistema de coordenadas embutido nos dados é o que chamamos de WCS (World Coordinate System). É graças a ele que é possível identificar a posição de estrelas e outros objetos apenas movendo o cursor sobre a imagem no DS9.

Iniciaremos criando um frame em branco no DS9 (clique nos botões [frame] e [new] na barra de botões) e adicionaremos os arquivos FITS que formarão as peças de nosso quebra cabeças através do menu “File > Open as > WCS Mosaic Segment“.

Após selecionar cada arquivo a ser adicionado ao mosaico, selecione a opção WCS na nova janela de diálogo (figura abaixo) e clique em ok. Repita a operação para todas as imagens individuais.

Após carregar todas as imagens, clique no botão [scale] e na opção [log]. Em seguida, usando o menu superior, acesse “Scale > Scale Parameters…” e ajuste os parâmetros Low e High para os valores 10 e 3000, respectivamente. Você deverá chegar no resultado abaixo. É uma bela imagem, mas podemos melhorar a visualização mudando a escala de cores de ‘grey’ para ‘bb’, utilizando a barra de botões: [color] e [bb].

Por fim, chegamos em nossa versão da mais famosa nuvem molecular do universo! Os Pilares da Criação, agora em infravermelho! Você pode experimentar outras escalas e outros valores de parâmetros, comparando os resultados. Aqui não existem escolhas certas ou erradas, é apenas uma questão de evidenciar os aspectos que mais interessem na imagem. E por vezes o aspecto mais importante é a beleza do imagem final!

Visualização final no DS9, com opção de cor “bb”. A escala selecionada é “log”, com parâmetros Low = 10 e High = 3000. [Dados: Nasa/ESA/Hubble/STScI. Processamento: Wandeclayt M.]

Gaia – O mapeador dos céus.

Diagrama Hertzprung-Russel de 1 milhão de estrelas do catálogo Gaia EDR3 a menos de 200 parsecs.
Composição artística do satélite Gaia com a Via Láctea ao fundo. [créditos: ESA/ATG Medialab e ESO/S. Brunier]

O satélite Gaia não nos envia imagens exuberantes como o Telescópio Espacial Hubble, mas também se consagrou como um marco na história da astronomia, medindo com precisão sem precedentes o brilho, a posição, a distância e a velocidade de quase dois bilhões de estrelas.

Determinar a distância de objetos astronômicos é essencial para compreender as propriedades físicas desses objetos. Uma estrela que nos parece muito brilhante, pode na verdade ser um objeto modesto mas muito próximo de nós. Por outro lado, fontes que parecem apenas uma pequena estrela podem na verdade corresponder a uma galáxia inteira nos confins do universo observável. E o Gaia é o campeão na determinação destes dados que nos permitem calibrar nossas escalas astronômicas de distância, entender melhor a evolução estelar e estimar com mais precisão a própria idade do universo superando inclusive o já impressionante desempenho de seu antecessor, o satélite Hipparcos (1989-1993).

O catálogo final do Gaia estará disponível em 2022, mas três liberações públicas de dados parciais já foram realizadas – a última delas (Early Data Release 3 – EDR3) em dezembro de 2020. Os dados são públicos e os acessamos para criar o gráfico abaixo, conhecido como diagrama HR e fundamental para o entendimento da evolução das estrelas, utilizando dados de 1 milhão de estrelas do catálogo do Gaia, localizadas a menos de 200 parsecs.

O astrofísico Alexandre Oliveira, professor e pesquisador da Universidade do Vale do Paraíba, em São José dos Campos (SP), nos conta que “A excelente qualidade destes dados permite enxergar detalhes nunca antes percebidos, como a assinatura de tipos diferentes de Anãs Brancas, com núcleos ricos em Hidrogênio, Hélio ou Carbono, representados pelas três faixas estreitas no canto inferior esquerdo. Também é visível, na região das Gigantes Vermelhas, um adensamento de forma longa e diagonal conhecido como Red Clump, associado a estrelas de baixa massa que queimam Hélio em seus núcleos.

Diagrama HR de uma amostra de 1 milhão de estrelas localizadas a menos de 200 parsecs (652 anos luz) [créditos: Gaia/ESA/DPAC, Wandeclayt M./Céu Profundo]

Faça você mesmo: NGC 6302 – A Nebulosa da Borboleta.

NGC 6302 – A Nebulosa da Borboleta a partir de dados do Telescópio Espacial Hubble. [Dados de imagem: NASA/ESA/STScI, Processamento: Wandeclayt M./Ceu Profundo]

As imagens de objetos de céu profundo – galáxias, nebulosas e aglomerados estelares – produzidas com dados do telescópio espacial Hubble (HST) são tão fabulosas que acabam inspirando a pergunta: “Nossa, mas é uma foto mesmo? Dá pra observar ela assim?”

A dúvida é legítima e para ajudar a entender como nascem estas impressionantes visões astronômicas vamos compor juntos uma imagem da nebulosa planetária bipolar NGC 6302 – A Nebulosa da Borboleta – utilizando dados de arquivo do Hubble.

Primeiro ponto importante: as câmeras do Hubble não são coloridas. São sensores monocromáticos de alto desempenho, sensíveis a toda a faixa visível do espectro eletromagnético e a porções do infravermelho e do ultravioleta próximos.

Para compor imagens coloridas com os imageadores atualmente em operação no telescópio espacial – a WFC3 (Wide Field Camera 3) e a ACS (Advanced Camera for Surveys) – precisaremos combinar dados obtidos em observações separadas, cada uma delas utilizando um filtro diferente, que deixa passar apenas uma faixa (cor) da luz incidente.

Como o objeto a ser imageado é uma nebulosa, uma escolha comum de filtros é a que seleciona a luz emitida por alguns elementos abundantes em sua composição. Escolheremos filtros que deixam passar certos comprimentos de onda associados a átomos de hidrogênio, oxigênio e enxofre.

FiltroElemento
F502NO III (Oxigênio duplamente ionizado)
F658NH alfa
F673NS II (Enxofre ionizado)

Garimpando os dados

Temos então todas as informações que precisamos para fazer nossa busca por dados no arquivo do Hubble:

AlvoNGC 6302
CâmeraWFC3, ACS
FiltrosF502N, F658N, F673N
Dados para busca dos dados para composição da imagem da nebulosa NGC 6302.

Introduziremos esses dados na interface de pesquisa do arquivo do Hubble em https://archive.stsci.edu/hst/search.php

Interface de busca do arquivo do Telescópio Espacial Hubble.

O resultado dessa busca nos mostrará os dados arquivados de observações da NGC 6302 realizadas com as câmeras e filtros selecionados. Entre os resultados, encontramos um conjunto de exposições realizadas com a WFC3 em 13/03/2020, nos três filtros de interesse e com tempos longos de exposição (todos acima de 1000s). BINGO! São esses que vamos usar!

Resultados da busca. Os três arquivos selecionados são de uma mesma sequência de observação e utilizam os três filtros que nos interessam.

Requisitando os arquivos.

Antes de requisitar os dados, podemos visualizar uma prévia das imagens clicando sobre o nome dos arquivos. Este é um passo importante porque podem ocorrer falhas durante a observação, como problemas de guiagem do telescópio e estabilização da imagem, que resultem em dados inutilizáveis. Como cada arquivo individual pode ultrapassar os 200 MB, convém checar sua integridade antes do download.

Visualização prévia dos dados de imagem.

Após inspecionar cada um dos arquivos de interesse e de nos certificarmos que todos são aceitáveis, podemos requisitar os dados. Selecionamos os três arquivos e clicamos no botão [Submit marked data for retrieval from STDADS].

Requisição dos dados selecionados.

Na janela seguinte, configure o formato dos dados requisitados. Queremos apenas os dados já calibrados e com a extensão drc.

Você receberá uma confirmação de sucesso da requisição e um link de ftp para o download dos arquivos será enviado para o email indicado. Você pode acessar o servidor pelo navegador também, se não tiver um cliente de ftp em sua máquina. Salve os arquivos disponibilzados na pasta. Além dos arquivos de dados FITS, uma prévia em formato jpeg também estará disponível como referência.

E agora? O que faço com os arquivos?

Agora vamos criar a nossa composição RGB combinando os arquivos FITS que acabamos de baixar utilizando o software SAO Image DS9 (Disponível gratuitamente para Linux, Mac OS e Windows em https://sites.google.com/cfa.harvard.edu/saoimageds9/download).

  1. No DS9 crie um novo frame RGB ( utilize o menu Frame > New Frame RGB ou os botões [frame] e [rgb])
  2. Associaremos cada imagem a um dos canais RGB de acordo com o comprimento de onda do filtro utilizado, atribuindo ao canal vermelho (R) o filtro de maior comprimento de onda (F673N, SII), ao canal verde (G) o comprimento de onda intermediário (F658N, H alfa) e ao canal azul (B) o comprimento de onda mais curto (F502N, OIII).
  3. Selecione o canal ativo clicando na coluna Current na janela RGB. Em seguida abra o arquivo correspondente ao canal ativo utilizando o menu File > Open ou os botões [file] e [open] e repita a operação para os três canais.
  1. Ok, mas como saber que arquivo corresponde a cada canal? Você pode conferir na página com o resultado da busca, se ela ainda estiver aberta em seu navegador ou se quiser repetir a pesquisa, mas cada arquivo FITS carrega também um cabeçalho de metadados chamado Header que pode ser inspecionado dentro do DS9. Para inspecionar o header de um arquivo aberto clique nos botões [file] e [header] . Você verá um arquivo de texto como o da figura abaixo. Procure a informação “FILTER = “.
  1. Agora é só lembrar que R = F673N, G = F658N e B = F502N. Mas tem um detalhe aí… Estamos colocando o filtro F658N no canal G, mas na verdade a linha de emissão do hidrogênio alfa é também vermelha! Então é bom lembrar que o que aparece em verde na imagem é na realidade um outro tom de vermelho, mas com a nossa escolha de cores vai ficar bem mais fácil distinguir o que corresponde a cada filtro. Essa configuração é conhecida como “Hubble pallete” e se popularizou com a célebre imagem do Hubble: “Os Pilares da Criação”, que mostra detalhes da Nebulosa da Águia (M 16) com esse padrão de cores.
  2. Pronto! Agora que carregamos os três arquivos precisamos ajustar os histogramas. Comece com a imagem no canal R. Clique nos botões [scale] e [log] e em seguida acesse o menu Scale > Scale parameters…
  3. Você verá um histograma como o da imagem abaixo. Perceba que no gráfico, toda a informação está amontoada perto do zero, ou seja: está tudo muito escuro e vamos precisar “esticar” esse histograma. Introduza esses valores na janela: Low = 0.01 e High = 6.
  1. Repita esse procedimento com os canais G e B usando Low = 0.01 e High = 19. Você também pode experimentar outros valores e pode também tentar outras escalas além da [log]. É aqui que você pode dar seu toque pessoal na imagem. Como diz Rick Sanchez: “Às vezes a ciência é mais arte que ciência!“.
  2. O resultado pode ser algo como a imagem abaixo, mas não perca a chance de libertar o artista que existe em você! Brinque com parâmetros e escalas até encontrar uma combinação satisfatória.

E o nosso resultado final!

Depois de muitas experiências, ficamos felizes com o resultado da imagem abaixo. Mas para chegar nesse resultado a imagem passou por alguns passos adicionais em programas de edição de imagens. Você pode usar programas como o Photoshop ou o GIMP para fazer ajustes cosméticos na sua imagem, reduzindo ruídos, evidenciando detalhes, aplicando ajustes não lineares… E a verdade é que a gente nunca conclui a edição de uma imagem dessas. Sempre dá vontade de mexer um pouco mais, mas a gente acaba parando em algum ponto porque o arquivo do Hubble é enorme e o universo é ainda mais! E a gente já quer passar pro próximo objeto! Que tal uma galáxia na próxima tarefa?

NGC 6302 – A Nebulosa da Borboleta. Imagem RGB composta com dados do Telescópio Espacial Hubble (HST). [dados: NASA/ESA/STScI. processamento Wandeclayt M./Céu Profundo]

Criando Imagens Astronômicas com Telescópio Hubble

Imagem RGB do planeta Marte produzida com dados de arquivo do telescópio espacial Hubble [imagem: Hubble/STscI. processamento: Wandeclayt M.]

Que tal produzir imagens como esta do planeta Marte utilizando dados reais do telescópio espacial Hubble? Isto é não apenas possível como até relativamente simples. E vamos mostrar pra você, passo-a-passo, como pesquisar o arquivo do Hubble em busca de dados e como processá-los para gerar uma imagem colorida como esta.

Os dados do Hubble e de quase todos os grandes observatórios astronômicos são disponibilizados integralmente ao público após um período de exclusividade para o pesquisador que propôs a observação. Isto permite que novas descobertas sejam feitas por outros grupos de cientistas ao analisar os dados arquivados e isso inclui a possibilidade de seu uso por cientistas cidadãos.

Colocando a mão na massa!

Vamos mostrar agora um exemplo prático, fácil e rápido, que não requer prática nem tampouco habilidade, pra mostrar que qualquer criança brinca e se diverte com o telescópio espacial mais querido do mundo!

Marte e a Terra tiveram uma aproximação histórica em agosto de 2003, quando os dois planetas estiveram a menos de 56 milhões de km de afastamento. Que tal se procurarmos observações do Hubble nesse período para criar nossa imagem de Marte?

Para isso vamos acessar a interface de busca no arquivo do Hubble em

https://archive.stsci.edu/hst/search.php

Faremos uma busca por imagens do instrumento WFPC2 (Wide Field Planetary Camera 2), tendo como alvo o planeta Marte (Target Descrip: Mars) e início da observação após 20 de agosto de 2003 (Start Time: > 2003 aug 20). Escolhemos essa data porque a oposição ocorreu no dia 28 de agosto e a máxima aproximação no dia 27 de agosto, então qualquer imagem capturada aproximadamente uma semana antes ou após estes eventos pode ser interessante.

Seleção de parâmetros de busca no arquivo do Hubble.

Entre os resultados dessa busca, vemos que há observações bem promissoras próximas do nosso período de interesse. Vamos agora selecionar quais delas usaremos para compor nossa imagem!

Nosso objetivo é criar uma imagem com cores razoavelmente naturais de Marte.
Mas a câmera do Hubble é monocromática, assim como todas as câmeras astronômicas científicas de alto desempenho instaladas em telescópios para pesquisa. Mas se temos à nossa disposição apenas imagens originalmente em escala de cinza e queremos chegar numa imagem colorida, qual a magia necessária?

Escolhendo os ingredientes do bolo


O segredo para gerar uma imagem colorida a partir das imagens monocromáticas do Hubble – ou de qualquer outro telescópio – é atribuir as cores vermelha (R), verde (G) e azul (B) para imagens em tons de cinza e combiná-las num arquivo colorido RGB.

Isto funciona porque cada arquivo em tons de cinza registrou apenas uma “cor” da luz incidente. Escrevemos cor entre aspas porque na verdade algumas faixas de comprimento de onda registrados pela câmera nem caracterizam “cores” da maneira como as enxergamos. Afinal, que cor é infravermelho? Ou ultravioleta?

Mas vamos ao que interessa! Que arquivos usaremos para compor nossa imagem?
Nossa sugestão é usar os arquivos do dia 26 de agosto, registrados através dos filtros F631N (vermelho), F502N (verde) e F401M (azul). O horário de captura é uma informação importante também. Como Marte também está girando em torno de seu eixo, é importante que não haja um grande intervalo entre cada exposição, para que possamos sobrepor as três imagens sem que o movimento de rotação do planeta atrapalhe a composição.

Clicando no nome dos arquivos selecionados, uma imagem prévia é exibida para inspeção.
E se tudo parecer bem, podemos partir para a requisição dos arquivos originais.

Pré visualização de um dos resultados da busca no sistema de arquivos do Hubble.


Requisitando os arquivos originais

Após a inspeção dos arquivos selecionados, estamos prontos para baixar os dados para nosso processamento. No alto da tela, use o botão <submit marked data for retrieval from STDADS>.

Na tela seguinte, informe seu email, marque a opção “Calibrated” e selecione a extensão “c0m“. Clique no botão <Send retrieval request to ST-DADS>.

Se tudo deu certo, você verá uma tela de confirmação e logo receberá um email com o link para a pasta de download dos arquivos que você poderá acessar usando seu browser ou um cliente de ftp.

Tela de confirmação da requisição de arquivos do Hubble.

E onde eu coloco esses arquivos?

Excelente pergunta! Para abrir e manipular os arquivos FITS precisaremos do programa gratuito SAO Image DS9. Ele está disponível para os sistemas operacionais Linux, Mac OS e Windows no link abaixo.

https://sites.google.com/cfa.harvard.edu/saoimageds9/download

Agora que você instalou e baixou o DS9, podemos ir para a parte mais divertida de nossa tarefa.

No menu do DS9 clique em Frame > New Frame RGB.
Além da janela principal do DS9, a janela RGB será exibida:

Na primeira coluna (current) da janela RGB selecionamos que camada do arquivo está ativa e na segunda coluna (view) temos as caixas de seleção de visibilidade das camadas. Vamos manter a seleção atual e carregar o arquivo da camada vermelha (Red) de nossa composição. Podemos usar o menu File > Open, ou os botões <file> e <open> na barra de botões da interface gráfica, para carregar o arquivo correspondente à cor vermelha (Filtro F631N).

Certinho. Carregamos o arquivo. Mas talvez essa tela preta não seja exatamente o que você estava esperando. Calma! A informação está aí em algum lá! Vamos procurá-la!

Clique nos botões <scale> e <linear>, esses que estão em azul na janela acima. Agora vá no menu Scale > Scale Parameters. Você verá agora um histograma como o da janela abaixo:

Esse histograma nos mostra que toda a informação está concentrada nos tons mais escuros. Para tornar essa informação visível, mudaremos manualmente os limites Low e High. Colocamos os valores 200 (Low) e 2400 (High), como na janela abaixo, e clicamos em <Apply>.

E o resultado é este:

Agora temos a primeira camada de nossa imagem carregada e visível.
Em seguida, voltamos à janela RGB e marcamos na coluna current a camada verde (Green) e voltamos ao menu File > Open (ou aos botões na barra) para carregar o arquivo correspondente à cor verde (filtro F502N). Repetimos a operação marcando a camada azul (Blue) e carregando o arquivo correspondente à cor azul (filtro F401M).
Se necessário repita o procedimento que utilizamos na camada vermelha com os histogramas de cada camada.

É possível também que as imagens não estejam completamente alinhadas, como no exemplo abaixo. E precisaremos alinhá-las manualmente.

O formato FITS suporta informações de WCS (World Coordinate System) – o sistema de coordenadas celestes utilizado – o que é fundamental para alinhar imagens de estrelas e de objetos de céu profundo como galáxias e nebulosas. Mas no caso dos planetas, o sistema de coordenadas não vai nos ajudar muito, porque estes objetos se deslocam com relação ao fundo de estrelas. A alternativa aqui, já que Marte está centralizado em cada frame, é tentar fazer o alinhamento diretamente pelas bordas das imagens.

Na janela RGB, acesse o menu e selecione a opção align > image.

Se tudo der certo, as imagens estarão coincidentemente sobrepostas e este será o resultado:

É possível exportar a imagem final em vários formatos (tiff, jpeg, png, gif) no menu File > Save image.

Você pode continuar experimentando valores diferentes nos parâmetros de escala do histograma. Pode inclusive experimentar outros modos além do Linear. Você vai ver que cada mudança de parâmetro pode evidenciar ou suprimir certas características. Você pode também experimentar com imagens capturadas em outros filtros, acrescentando dados em infravermelho ou ultravioleta, por exemplo. Uma dica é atribuir as camadas R, G e B por ordem decrescente de comprimento de onda. Use o R para comprimentos de onda mais longos, G para intermediários e B para os comprimentos de onda mais curtos.

Deu pra notar que as possibilidades são infinitas, né? Então que tal explorar os arquivos e tentar outras composições? Nós vamos querer ver os resultados! Então não esquecer de marcar o @ceuprofundo quando postar suas imagens nas redes sociais!

Asteroides Potencialmente Perigosos. O que são?

Asteroides como Bennu, visto acima em um mosaico composto por 12 imagens registradas pela missão OSIRIS-REx da NASA, são verdadeiros fósseis espaciais, conservando suas características por bilhões de anos e podem nos ajudar a entender a formação dos planetas do Sistema Solar. [Crédito: NASA/Goddard/University of Arizona]

Você certamente já se deparou com manchetes como esta: “Asteroide maciço pode se chocar com a Terra no próximo ano, informa NASA”. E tudo bem se você se assustar num primeiro momento, mas pode relaxar, porque a intenção de uma manchete como essa é apenas assustar, chocar e ganhar cliques!

Mas o risco real de impactos com objetos potencialmente perigosos no futuro próximo é desprezível e você pode seguir a vida se preocupando com riscos mais imediatos, como doenças, atropelamentos e ativistas anti-vacina.

Pra falar sobre isso, recebemos um reforço de peso. Chamamos o astrofísico Cássio Barbosa para nos ajudar a contar um pouco da história desses pedregulhos espaciais.

Mas o que são esses pedregulhos?

Se você já fez uma pequena reforma em sua casa, sabe a quantidade de entulho que sobra no final da construção. No processo de formação do Sistema Solar não foi muito diferente. Com o agravante de não podermos chamar uma caçamba pra levar embora todos os cometas e asteroides que sobraram depois da formação dos planetas, planetas anões e satélites do Sistema Solar.

Cássio nos lembra que “Quem fez (e ainda faz) esse papel de limpeza foram o Sol, Júpiter e Saturno, corpos celestes de maior massa no Sistema Solar.
Ainda assim, há bastante entulho na forma de cometas e asteroides e estudar esses objetos é importante porque eles nos fornecem informações importantes sobre esse primitivo canteiro de obras que formou o Sistema Solar há 4.6 bilhões de anos.

Os cometas, compostos principalmente de gelo e poeira, são corpos voláteis que sublimam (passam do estado sólido diretamente para o gasoso) quando passam pelos pontos de suas órbitas mais próximos do Sol, produzindo uma nuvem de gás e íons que conferem a beleza que tanto encanta os observadores. Os asteroides são mais discretos. Corpos rochosos, sem cauda ou cabeleira, mas igualmente importantes para nos ajudar a entender a origem do Sistema Solar.

E onde mora o perigo?

O problema vem quando esses objetos possuem órbitas que cruzam a órbita terrestre. Mas isso não significa que objetos que “podem” colidir com a Terra irão de fato impactar nosso planeta.

Os objetos próximos à Terra são chamados de NEOs (Near Earth Objects) e são estudados e constantemente monitorados por observatórios profissionais especializados em pequenos corpos do Sistema Solar, como o projeto Catalina Sky Survey, que tem o objetivo de catalogar 90% da população estimada de objetos com mais de 140m de diâmetro.

Além das redes de alerta e detecção como o Catalina, dados observacionais de várias fontes se somam para caracterizar a massa, dimensões, albedo e magnitude dos NEOs.
Um dos elos nessa corrente é o Observatório Astronômico do Sertão de Itaparica (OASI) – uma unidade do Observatório Nacional, operando na cidade de Itacuruba (PE). Outra peça chave no estudo dos NEOs é a vasta rede de astrônomos cidadãos que alimentam as bases de dados profissionais com suas observações.

Mesmo sem um risco imediato de colisão, é importante conhecer nossa vizinhança e mapear os objetos que no longo prazo possam representar uma ameaça de impacto catastrófico. O importante aqui é conhecer com precisão o movimento de cometas e asteroides próximos e prever com grande antecedência suas trajetórias.

Esse cuidadoso e constante monitoramento dos NEOs nos permite estabelecer rapidamente os parâmetros orbitais de cada objeto recém descoberto, mas ainda assim é comum que inicialmente as incertezas sejam grandes o suficientes para garantir o sensacionalismo das manchetes!

Especificamente, para ser incluído na classe de Asteroides Potencialmente Perigosos, ou PHA (Potentially Hazardous Asteroids), um objeto precisa ter mais de 140m de diâmetro E atingir uma distância mínima de intersecção com a órbita a Terra (MOID – Minimum Orbit Intersection Distance) de 7,5 milhões de km ( isso equivale a aproximadamente 20 vezes a distância da Terra a Lua ).

Uma boa dica para abafar qualquer teoria da conspiração é ir direto à fonte. Os dados de monitoramento desses objetos são públicos e podem ser acessados pela página do Centro para Estudos de Objetos Próximos à Terra (CNEOS) da NASA/JPL.

Inclusive com uma lista das futuras aproximações disponível AQUI.

Tamanho do objetoFrequencia dos impactosEfeito
fragmentos de cometas e asteroidesdiáriosdesintegração na atmosfera (meteoros)
maior que 100m10 mil anosdestruição em escala local
maior que 1km>100 mil anosdestruição em escala global
Pequenos fragmentos de cometas e asteroides entram diariamente em nossa atmosfera, sem maiores consequências. Impacto com objetos maiores são muito mais raros.

Conhecendo os tipos de telescópio.

Antes de pensar em comprar o seu primeiro telescópio – ou mesmo se você já deu esse primeiro passo – é importante conhecer os principais tipos de telescópio, suas características, vantagens e desvantagens. Veremos que há várias configurações ópticas distintas, cada uma delas se encaixando numa faixa de preços e oferecendo melhor desempenho na observação de algumas classes de objetos.

Veremos também que a abertura é o principal parâmetro óptico de um telescópio, mas que nem sempre é recomendável investir no maior telescópio que você possa comprar. Um grande telescópio refletor de 40cm de diâmetro pode produzir imagens espetaculares, mas é um instrumento grande (pode chegar a 2 metros de altura), pesado, virtualmente impossível de se transportar. É o tipo de instrumento que vai requerer um abrigo permanente. De preferência, em um observatório fixo em algum lugar afastado da poluição luminosa das áreas urbanas. Se você não dispõe dessa estrutura, dificilmente vai poder desfrutar satisfatoriamente de um instrumento dessas dimensões.

É bom ter em mente que qualidade tem seu preço mas que nem sempre o telescópio mais caro lhe proporcionará a melhor experiência.

Tipos de configuração óptica.

Telescópios são coletores de luz. Recebem a luz incidente em suas objetivas e a exibem em suas oculares. A primeira classificação importante diz respeito ao tipo de objetiva empregada. Há telescópios que utilizam espelhos para capturar a luz dos objetos celestes. Há telescópios que utilizam lentes para isso. E há telescópios que combinam lentes e espelhos. Cada uma destas construções possui suas vantagens e desvantagens e há astrônomos amadores que chegam a investir em todos eles, para ter um instrumento otimizado para cada tipo de observação.

TelescópioObjetiva
Refrator (Luneta)Lentes
RefletorEspelhos
CatadióptricoLentes e Espelhos

Diâmetro e distância focal.

Diâmetro e distância focal são o sobrenome do seu telescópio. Após informar o tipo de óptica (Refrator/Refletor/Catadióptrico) você vai dizer o seu diâmetro e sua distância focal.
Assim saberemos sua capacidade de captação de luz (proporcional à área da objetiva), sua resolução (proporcional ao diâmetro da objetiva) e poderemos estimar o tamanho do campo de visão do telescópio (inversamente proporcional à distância focal).
Podemos falar por exemplo em um telescópio refletor newtoniano com diâmetro D = 200 mm e distância focal F = 1200mm. Uma maneira mais comum de informar a distância focal é através da razão entre D e F. Este mesmo telescópio pode ser identificado como tendo D=200mm com f/6. Ou, seja: A distância focal é igual a 6 vezes a abertura.

É importante saber o diâmetro do seu instrumento porque ele nos diz o quanto ele é capaz de coletar a luz de objetos distantes e difusos e o quanto ele é capaz de revelar detalhes e estruturas dos objetos observados ou de, por exemplo, ser capaz de ‘separar’ onjetos que parecem muito próximos, como estrelas duplas.

E é importante saber a distância focal porque precisamos dela para calcular o aumento do instrumento. Para encontrar o aumento utilizado, divida a distância focal da objetiva pela distância focal da ocular. Por exemplo: um telescópio com 1200mm de distância focal, com uma ocular de 12mm proporcionará um aumento de A = 1200mm/12mm = 100 vezes.

Refratores

Telescópio Refrator de 120mm f/7.5 [imagem: Sky-Watcher]

Telescópios refratores utilizam apenas lentes em sua construção e são descendentes diretos do primeiro telescópio astronômico utilizado por Galileu Galilei em no século 17.
Um bom telescópio refrator produz imagens brilhantes, com excelente contraste e nitidez.
Mas os refratores de baixa qualidade, como as pequenas lunetas (até 60mm de diâmetro) normalmente vendidas em lojas de departamento formam imagens que sofrem de sérias aberrações. Como cada cor sofre desvios diferentes ao atravessar uma lente, a imagem formada possui focos diferentes para cada cor produzindo a aberração cromática, percebida na forma de franjas coloridas ao redor dos objetos observados.
Para corrigir a aberração cromática, os instrumentos mais caros e de melhor qualidade (acromáticos e apocromáticos) utilizam conjuntos de lentes combinadas em elementos duplos (dubletos) ou triplos (tripletos), feitos com vidros de densidades diferentes e com diferentes geometrias. Obviamente, a construção mais complexa e o desempenho superior, especialmente para astrofotografia, são refletidos nos preços dos bons telescópios refratores, tornando proibitivo o custo de instrumentos com mais de 120mm de abertura.
Na comparação com outros instrumentos de mesma abertura, a imagem produzida pelos refratores apocromáticos é supera não apenas o desempenho dos refratores acromáticos, mas também dos refletores e catadióptricos.

Telescópios refratores normalmente são apresentados com distâncias focais longas, como f/10 ou f/11. Isso os torna excelentes para a observação da Lua e de planetas, proporcionando grandes aumentos com imagens brilhantes e ricas em contraste.

São também instrumentos que exigem pouca manutenção, sem necessidade de alinhamento periódico ou realuminização de suas superfícies ópticas. Se conservados em ambiente seco e protegidos de fungos, são instrumentos que sobrevivem por gerações.

Refletores

Refletor Newtoniano de 2000mm f/5 [imagem: Sky-Watcher]

Na relação custo benefício, os telescópios que utilizam espelhos para coletar a luz incidente dos objetos astronômicos são os campeões absolutos.
A configuração desenvolvida por Isaac Newton em 1668 é simples, robusta e eficiente: um espelho côncavo, com superfície esférica ou parabólica, reflete os raios incidentes em direção a um ponto focal. Um espelho plano, posicionado sobre o eixo óptico e inclinado 45° desvia a luz perpendicularmente para ser observada na lateral do tubo óptico.

Por utilizar espelhos como objetiva, os telescópios refletores eliminam o problema da aberração cromática, já que todos os raios sofrem a mesma reflexão independente da cor.
Apesar disso, outras aberrações decorrentes da geometria do espelho podem estar presentes, com a aberração esférica.

Cada lente empregada num telescópio refrator precisa ter duas superfícies polidas com grande precisão. No caso de um refrator apocromático que utiliza um conjunto de três lentes (tripleto) é necessário polir seis superfícies ópticas. Enquanto isso, o espelho primário de um telescópio refletor precisa de apenas uma superfície polida e aluminizada. Com isto temos uma construção mais simples e barata, que permite obter instrumentos de grandes diâmetros por preços acessíveis. Espelhos podem ser construídos com vidros mais baratos que lentes, já que a luz não precisará atravessá-los. No entanto é importante que os vidros utilizadas sejam de baixa expansão térmica, prevenindo deformações sob variação de temperatura.

Telescópio refletor newtoniano de 200mm em montagem dobsoniana. [imagem: Sky-Watcher]

A construção do tubo óptico de um telescópio newtoniano é simples e pode ser feita de forma artesanal, utilizando tubos de PVC, papelão ou apenas um esqueleto montado com hastes ou pequenos tubos e pode ser montado em bases de madeira sem necessidade de tripés caros e complexos. Esta configuração caseira foi desenvolvida e popularizada por John Dobson a partir dos anos 1970 e se mantém popular entre os astrônomos amadores de hoje. Comparando preços de instrumentos industrializados de marcas internacionais como Sky-Watcher, GSO, Orion, Meade e Celestron, é possível encontrar telescópios dobsonianos com diâmetros de 20 a 25cm mais baratos que apocromáticos de 12cm.

Mas não existe almoço grátis. Ao contrário dos refratores (e dos catadióptricos) os telescópios refletores precisam de cuidados e manutenção constantes. Quando transportados é comum que ocorra algum desalinhamento entre os espelhos primário e secundário. Este procedimento de alinhamento – que nós chamamos de colimação – precisa ser repetido com frequência e é fundamental para manter a qualidade da imagem formada. A limpeza dos espelhos também não é trivial e deve ser feita com cuidado, evitando danificar a fina camada refletora de alumínio. Eventualmente pode ser necessário refazer a aluminização dos espelhos, para restaurar seu desempenho.

Estas tarefas podem acabar se tornando prazerosas para a maioria dos astrônomos amadores, mas para outros simplesmente é algo a ser evitado.

Note também que nem toda a área do espelho primário é utilizada. O espelho secundário causa a obstrução da região central do primário, reduzindo a quantidade de luz coletada.

Telescópios refletores variam normalmente entre diâmetros de 11 a 40cm, com distâncias focais curtas – entre f/4 e f/7, tipicamente – proporcionando vastos campos, ideais para a observação de objetos de céu profundo, como galáxias, nebulosas e aglomerados estelares.

Catadióptricos

Telescópio Schmidt-Cassegrain de 8″ (200mm) f/10 em montagem equatorial motorizada. [imagem: Celestron]

Telescópios cadadióptricos combinam lentes e espelhos numa construção compacta e robusta com imagens de alto desempenho. Os catadióptricos mais comuns são dos tipos Schmidt-Cassegrainn (SCT) e Maksutov-Cassegrain.
São telescópios que utilizam em sua seção refletora uma configuração diferente dos newtonianos. A configuração do tipo Cassegrain, o espelho secundário reflete a luz de volta para o centro do espelho primário, enquanto na configuração newtoniana a luz é refletida perpendicularmente para a ocular na lateral do tubo.
A configuração Cassegrain leva a um desenho compacto, com tubos ópticos curtos mesmo para instrumentos com números f longos, tipicamente acima de f/10.
Na entrada do tubo, uma lente corretora do tipo Schmidt ou Maksutov complementa o conjunto, resultando em um telescópio que combina as melhores características dos refletores e refratores para reduzir aberrações e produz um tubo fechado, robusto, fácil de transportar e de baixa manutenção.

Os Maksutov-Cassegrain são comuns na faixa de 90mm a 150mm de diâmetro, entre f/12 e f/15, enquanto os SCT aparecem entre 200mm (8″) e 400mm (16″), geralmente com f/10. Note que são instrumentos de grande abertura, o que garante a captação de luz necessária para a observação de objetos de céu profundo, mas com grandes distâncias focais, forçando aumentos maiores e limitando o campo observável. Por outro lado, as distâncias focais mais longas são uma vantagem para a observação da Lua e planetas, mas a obstrução central do espelho – assim como ocorre nos newtonianos – reduz a nitidez e os detalhes na imagem. Resumindo, os SCT e os Maksutov podem ser utilizados para qualquer tipo de observação, mas possuem pontos fracos em todas elas.

Isso não impede o Schmidt-Cassegrain de 8 polegadas (200mm) de ser talvez o instrumento mais vendido do mundo. Você certamente viu muitas imagens impressionantes de planetas ou objetos de céu profundo produzidas pelos célebres Celestron C8. E essa popularidade não é obra do acaso. O SCT de 8 polegadas é o canivete suiço da astronomia amadora. Versátil, portátil, robusto e se não é uma pechincha também não chega a custar uma fortuna em sua faixa de diâmetro.

Dá pra resumir?

Dá sim.

Lunetas entre 80 e 120mm são o melhor instrumento para observar a Lua, planetas e estrelas duplas. São uma boa escolha como instrumento de entrada para o iniciante por serem mais fáceis de manter, transportar e operar.
Lunetas maiores são pouco comuns, principalmente porque seriam muito caras.

Refletores com abertura entre 114mm e 150mm são instrumentos acessíveis, com o menor custo por cm de abertura, e também são uma boa opção de entrada. Mas é bom ter em mente que os refletores exigem mais cuidados que uma luneta e o conjunto de espelhos espelhos exige alinhamentos periódicos.
Refletores a partir de 200mm são a melhor opção para observar objetos de céu profundo, como galáxias, nebulosas e aglomerados estelares.

Telescópios Schmidt-Cassegrain ou Maksutov-Cassegrain são versáteis, compactos, leves e fáceis de transportar. Não são especialmente indicados para nenhum tipo de observação mas conseguem um bom desempenho tanto na observação planetária e lunar quanto na de céu profundo.

Tipo de telescópioVantagensIndicado para:
RefratorGrande nitidez e contrasteLua e planetas
RefletorMelhor custo por diâmetroCéu profundo
CatadióptricoRobusto e compactoMulti uso

Viajando com uma balança pelo Sistema Solar.

[Arte: Wandeclayt M./Céu Profundo sobre imagem do Hubble/STScI/NASA/ESA]

Vamos ser um pouquinho rigorosos com os termos aqui. O peso é a força com que você e todos os objetos ao seu redor são atraídos para o centro da Terra. É um efeito da gravidade e portanto é de se esperar que em outros planetas, sob o efeito de acelerações gravitacionais diferentes da experimentada na superfície da Terra, o seu peso mude. A unidade de medida de força no Sistema Internacional de Unidades (SI) é o newton (e seu símbolo é o N). Como o peso é uma força, a rigor, deve ser medido em newtons.

Por outro lado, a quantidade de matéria que compõe um corpo – a sua massa – não varia se levado para a superfície de outro planeta ou satélite. A unidade de massa no SI é o quilograma (kg). Um corpo com massa de um 1 kg levado para a superfície da Lua parecerá seis vezes mais leve que na superfície da Terra, mas sua massa permanece constante: 1 kg.

Apesar das escalas das balanças que usamos no dia a dia estarem calibradas em gramas ou quilogramas (unidades de massa), o que elas medem diretamente não é a massa, mas sim o peso. Se não forem recalibradas, essas balanças dariam indicações bem diferentes de sua massa em diferentes corpos do Sistema Solar.

Bateu a curiosidade? Você pode testar abaixo o que a balança indicaria se você estivesse em outros objetos do Sistema Solar e vai se surpreender ao ver quer talvez nem precise se esforçar tanto na academia! Basta ir para Vênus pra sumir com o peso que a gente ganhou durante a quarentena (a temperatura de 480ºC e a atmosfera tóxica podem não ser muito agradáveis, mas pelo menos não precisaremos ir à academia durante a quarentena)!

Outra coisa a se levar em conta é que Júpiter, Saturno, Urano e Netuno são gasosos. Eles não possuem uma superfície definida como a Terra e os outros planetas rochosos. Para os planetas gasosos, usamos a aceleração da gravidade no topo da atmosfera.

Digite seu ‘peso’ no planeta Terra: kg

Planetas
Mercúriokg
Vênus kg
Terra kg
Marte kg
Júpiter kg
Saturno kg
Urano kg
Netuno kg
Satélites Naturais
Lua (Terra) kg
Europa (Júpiter) kg
Titã (Saturno) kg
Tritão (Netuno) kg
Titania (Urano) kg
Planetas-anões
Ceres kg
Haumea kg
MakeMake kg
Eris kg
Plutão kg

A exceção aqui é para as balanças de prato, que funcionam comparando duas massas e para as balanças que usam massas deslizando sobre uma haste, comuns em consultórios médicos e pediátricos.