ALERTA DE BOATO: O que é o Afélio?

Se você não recebeu uma bizarra mensagem falando sobre um nefasto “Fenômeno APHELION” em algum grupo do whatsapp, provavelmente ainda vai receber.

Captura de tela da mensagem FALSA que diz "A partir de amanhã, às 5:27, vivenciaremos o fenômeno aphelion, onde a Terra estará muito distante do Sol. Não podemos ver o fenômeno, mas podemos sentir seu impacto. Isso vai durar até agosto. Teremos um clima frio mais do que o clima frio anterior, o que afetará a gripe, tosse, falta de ar, etc. A distância da Terra ao Sol é de 5 minutos-luz ou 90 milhões de km. O fenômeno do afélio a 152 milhões de km."
A mensagem com conteúdo falso que tem circulado no whatsapp usando o termo astronômico em inglês Aphelion e com informações distorcidas.

O boato pega carona em um termo astronômico e segue destilando alarmismo e pedindo compartilhamento! Mas o que é realmente o afélio (é esse o termo em português)? E tem ele algum efeito perceptível no clima?

A órbita terrestre, como a de todos os planetas, é uma elipse, ou seja, um círculo um pouco alongado. E por ser alongada, a órbita possui um ponto mais próximo ao Sol, que chamamos de periélio, e um ponto mais distante, que chamamos de afélio. O afélio não é, portanto, um fenômeno, mas apenas um ponto de nossa órbita por onde passamos todos os anos. O boato também passa longe da realidade quando diz que o afélio vai durar de “amanhã” (não há data na mensagem) até agosto. O afélio é apenas um ponto na órbita e não um fenômeno duradouro. Em 2022 passaremos por esse ponto no dia 4 de julho. E em 4 de janeiro, passamos pelo outro ponto importante, o periélio. Mais informações sobre essas datas podem ser encontradas no site Time and Date.

A órbita da Terra, em azul na imagem, é quase circular e distância da Terra ao Sol varia apenas 1,7% em relação à média, como visto nesse gráfico gerado pelo visualizador de órbitas do Laboratório de Propulsão a Jato (JPL) da NASA. Ao contrário das órbitas de Mercúrio – a mais interna no gráfico – e a de Marte – a mais externa – que possuem excentricidade considerável. (https://ssd.jpl.nasa.gov/tools/orbit_viewer.html)

A mensagem acerta na distância em que a Terra se encontra do Sol no afélio (152 milhões de km), mas usa um valor absurdamente menor (e errado!) para o periélio, fazendo parecer que no afélio estamos muito mais distantes do Sol do que no resto do ano. Na verdade, a variação entre a distância média da Terra ao Sol e a distância no afélio e no periélio é de apenas 1,7% – o que é completamente imperceptível na prática. Os valores na tabela abaixo foram extraídos da Tabela de Dados Planetários do Centro Espacial Goddard da NASA e os valores da distância média ao Sol e do afélio e periélio da Terra estão destacados. Note que o valor de 90 milhões de km, atribuído ao periélio na mensagem, nos colocaria dentro da órbita de Vênus!

 Mercúrio  Vênus  Terra Marte Júpiter  Saturno  Urano  Netuno 
Distância Média ao Sol (106 km)57.9108.2149.6228.0778.51432.02867.04515.0
Periélio (106 km)46.0107.5147.1206.7740.61357.62732.74471.1
Afélio (106 km)69.8108.9152.1249.3816.41506.53001.44558.9
Excentricidade Orbital0.2060.0070.0170.0940.0490.0520.0470.010
Parâmetros orbitais dos planetas do Sistema Solar. fonte: https://nssdc.gsfc.nasa.gov/planetary/factsheet/

Vale lembrar também que não é o afélio que causa o inverno. Em julho, quando estaremos no inverno do hemisfério sul, será pleno verão no hemisfério norte.

As estações do ano são um efeito da inclinação do eixo de rotação da Terra em relação à sua órbita, que expõe mais diretamente um hemisfério aos raios solares do que o hemisfério oposto, de acordo com a época do ano.

Verão no Hemisfério Sul
No verão do hemisfério sul, os raios do Sol atingem mais diretamente nosso hemisfério e permanecemos iluminados por mais tempo. Os dias são mais longos e as noites são mais curtas. Ao mesmo tempo, o hemisfério norte recebe menos luz solar. A imagem acima foi produzida pelo observatório DSCOVR e mostra a face iluminada da Terra no dia 21 de dezembro de 2020. A linha tracejada marca o equador, dividindo os hemisférios. (crédito: DSCOVER/EPIC)
No inverno do hemisfério sul, os raios do Sol chegam mais inclinados ao nosso hemisfério e permanecemos iluminados por menos tempo. Os dias são mais curtos e as noites são mais longas. Ao mesmo tempo, o hemisfério norte recebe mais luz solar. A imagem acima foi produzida pelo observatório DSCOVR e mostra a face iluminada da Terra no dia 21 de junho de 2020. A linha tracejada marca o equador, dividindo os hemisférios. (crédito: DSCOVER/EPIC)

Esperamos que com esses dados e referências todos sejam capazes de ajudar a freiar mais um boato de rápida circulação nos grupos de whatsapp e possam ajudar a espalhar a boa ciência. Podem compartilhar este artigo sem moderação e estamos sempre prontos para tirar dúvidas em nossas redes sociais: sigam www.twitter.com/ceuprofundo e www.instagram.com/ceuprofundo.

Lua: Mares, oceanos e baías numa superfície desértica.

A face visível da Lua é marcada por vastas planícies escuras que contrastam com o terreno mais claro e mais acidentado do restante da superfície lunar. Apesar de não haver água no estado líquido na superfície da Lua, essas regiões recebem o nome de oceanos, mares, lagos e baías.

O mares lunares são na verdade um deserto seco e correspondem a regiões inundadas pelo basalto originado na atividade vulcânica lunar (https://doi.org/10.1029/2000JE001244) no período compreendido entre 4 e 1,1 bilhões de anos atrás(aqui é bom lembrar que no português brasileiro 1 bilhão equivale a 1.000.000.000).

A face visível da Lua (imagem da esquerda) e seu lado oculto (à direita) em mosaico composto por imagens da Lunar Reconnaissance Orbiter [crédito: NASA]

Por se tratar de regiões mais jovens do terreno, os mares exibem menos crateras de impacto que as regiões mais antigas e elevadas. Além disso, os mares possuem albedo mais baixo, refletindo menos luz e parecendo mais escuros, destacando-se – mesmo a olho nu – contra o terreno mais claro.

Os primeiros mapas a nomear acidentes do relevo lunar datam do século XVII e já registravam as planícies basálticas como mares e oceanos. Os mapas de Langrenus (1645), Hevelius (1647) e Riccioli (1651) traziam denominações distintas para os mares e para as demais formações da topografia da Lua. O sistema adotado por Riccioli é o que mais se aproxima da nomenclatura moderna, padronizada pela União Astronômica Internacional a partir da aprovação do mapa e catálogo Named Lunar Formations compilado por Mary Blagg e Karl Müller e publicado em 1935.

Mapa da Lua publicado em 1645 por Michael von Langren, o primeiro a atribuir nomes a formações da topografia lunar.
Mapa da Lua de Johanes Hevelius, publicado em 1647 na obra Selenographia.
Mapa lunar desenhado por Grimaldi e publicado por Giovanni Battista Riccioli no Almagestum Novum em 1651 [ETH-Bibliothek Zürich ]

O atlas de Blagg e Müller foi um primeiro passo na universalização da nomenclatura lunar, mas o aumento da resolução das fotografias lunares capturadas em telescópios terrestres e o mapeamento do lado oculto da Lua por espaçonaves exigiu sucessivas atualizaçoes nos mapas lunares nas décadas seguintes. Um curioso episódio seguiu o envio das primeiras imagens da face oculta da Lua pela sonda soviética Luna 3. Os cientistas soviéticos batizaram uma das raras planícies basálticas naquele lado da Lua de Mare Moscoviense, quebrando a tradição de nomear mares com nomes relacionados a àgua (Mar das Chuvas, Oceano das Tempestades…) ou a estados de espírito (Mar da Tranquilidade, Mar da Serenidade…) para o desconforto dos mais apegados à nomenclatura histórica.

A Assembleia Geral da União Astronômica Internacional (IAU General Assembly) de 1961 estabeleceu que além das regras em voga, ficasse estabelecido que: “Grandes áreas escuras são designadas por denominações em latim referentes a estados de espírito. Estes nomes são associados, de acordo com as regras de declinação e grafia do latim, aos substantivos apropriados: Oceanus, Mare, Lacus, Palus or Sinus. (As exceções Mare Humboldianum e Mare Smythii são mantidas, por estarem consagradas pelo uso). “

“Large dark areas are designated in Latin denominations calling up psychic states of minds. These names are associated, according to the Latin declination ruIes and spelling, to one of the appropriate substantives: Oceanus, Mare, Lacus, Palus or Sinus. (The exceptions, Mare Humboldianum and Mare Smythii, are preserved, due to long usage).” [XIth General Assembly. Berkeley, USA 1961]

A solução para o impasse soviético veio daí! Reza a lenda que o astrônomo Aldouin Dollfus, muito diplomaticamente, estabeleceu que o nome Mare Moscoviense estava de acordo com a regra, porque Moscou é um “estado de espírito”.

Mapa topográfico da Lua criado a partir de dados da sonda chinesa Chang-E1.

Imagens Astronômicas – Visualizando Dados de Imagem

M57 - Nebulosa do Anel
Nebulosa M57, na constelação de Lira. (Hubble/STScI/PID=12309. Processamento: Wandeclayt Melo)

É impossível conter a admiração frente a uma imagem exuberante e colorida como esta da nebulosa planetária M57. A imagem é resultado de observações realizadas pelo Telescópio Espacial Hubble utilizando canal UVIS da câmera WFC3, a mais moderna a bordo do telescópio, instalada em 2009 em sua última missão de manutenção.

Criamos esta imagem utilizando os arquivos originais do telescópio Hubble, combinando dados obtidos através de filtros que selecionam que faixas de comprimentos de onda são transmitidos ao sensor da câmera. Os filtros são necessários porque as câmeras de alto desempenho utilizadas para o registro de imagens astronômicas profissionais geram apenas imagens em tons de cinza, registrando a intensidade, mas não a cor, da luz incidente em cada pixel. As imagens coloridas são na verdade uma combinação de várias imagens individuais em tons de cinza que foram colorizadas posteriormente. Apesar de não registrar cores, estes arquivos podem carregar muito mais informações: coordenadas celestes da região imageada, características do telescópio e do sensor – incluindo parâmetros de eficiência quântica do sensor, que permitem estimar com precisão a quantidade de fótons que foi efetivamente contada por cada pixel – e camadas adicionais de dados como tabelas e arquivos de calibração. Como os formatos tradicionais de imagem não possuem provisão para transportar todos estes dados, a comunidade astronômica desenvolveu seu próprio padrão de arquivo, capaz de lidar com todas essas camadas de informação e de armazenar uma vasta gama de valores por pixel, necessária para compreender as diferenças de luminosidade que muitas vezes precisam ser registradas em uma única imagem sem perda de informação.

Um Formato de Arquivo Dedicado para a Astronomia

O formato de arquivo criado e adotado pela comunidade como padrão para dados e imagens astronômicas é o FITS – Flexible Image Transport System (documentação em https://fits.gsfc.nasa.gov/) e requer ferramentas e aplicativos especiais para sua visualização e análise.

Câmera CCD astronômica SBIG STT-8300. Este é um modelo de câmera disponível comercialmente e utilizada em telescópios de menor porte. Grandes telescópios não utilizam instrumentos comerciais e costumam integrar câmeras e outros detectores projetados especificamente para eles . [Crédito: Diffraction Limited]

Os dados no formato FITS dos telescópios espaciais e observatórios profissionais em solo são disponibilizados em repositórios públicos abertos para a comunidade científica e para a ciência cidadã. Isso significa que você pode acessar, por exemplo, o arquivo de imagens dos telescópios que integram a rede Las Cumbres Observatory (https://lco.archive.org) e localizar, baixar e processar dados reais de observação. Para isso você precisará de um aplicativo com suporte ao formato FITS e se você ainda não usa nenhum dos apresentados nesta lista https://fits.gsfc.nasa.gov/fits_viewer.html podemos sugerir algumas opções.

FITS Liberator

Uma das opções mais simples para visualizar e converter arquivos FITS para formatos de imagem tradicionais (JPEG, PNG, TIFF…) é o FITS Liberator.

Interface do FITS Liberator versão 3.0 (ESA, ESO, NASA).

O FITS Liberator é talvez a opção mais simples se a ideia é apenas visualizar e exportar os arquivos FITS para um editor de imagem tradicional. Ele permite também visualizar o cabeçalho (FITS Header) que traz informações importantes sobre o arquivo (filtros utilizados, tempo de exposição, coordenadas da imagem e do observatório, telescópio e câmera que originaram o arquivo…).
O download da versão mais recente pode ser feito em https://noirlab.edu/public/products/fitsliberator/
A versão 3.0, anterior à atual, possui alguns recursos úteis que foram suprimidos na versão 4.0. Isso simplificou a interface, mas a ausência da função ‘auto scaling’ que fazia um ajuste automático dos níveis de preto e branco na imagem dificulta a vida dos iniciantes. Mas a versão 3.0 continua disponível em: https://noirlab.edu/public/products/fitsliberator/download-past-versions/

Interface do FITS Liberator 4.0 (NOIRLab/IPAC/ESA/STScI/CfA).

SAO Image DS9

O SAO Image DS9 é uma ferramenta usadas por profissionais e por isso engloba funções avançadas de análise de imagens. É possível determinar coordenadas (astrometria) e medir magnitudes (fotometria) , traçar contornos, criar animações… mas tudo isso dentro de uma interface enxuta que não confunde os marinheiros (ou astrônomos) de primeira viagem. Profissionais e usuários experientes usam o DS9 principalmente através da linha de comando, integrado aos ambientes IRAF ou PyRAF.

Para iniciantes, a mais importante adição é a capacidade de combinar arquivos em camadas associadas às cores vermelha, verde e azul, criando assim imagens RGB coloridas. Recurso que pode ser muito útil para atividades educacionais com dados reais de telescópios.

SAO Image DS9 (Smithsonian Astrophysical Observatory, Center for Astrophysics, Harvard University)

O SAO Image DS9 é o nosso visualizador preferido e é o que utilizamos em nossas oficinas. Ele vem de uma longa linhagem que teve origem com o SAO Image em 1990. Uma segunda geração do software foi batizada de SAO TNG (numa referência ao seriado de ficção científica Star Trek – The Next Generation). A geração seguinte aproveitou o embalo e também pegou emprestado o nome de uma série derivada de Jornada nas Estrelas: Star Trek – Deep Space 9, chegando assim ao nome do nosso querido SAO Image DS9.

Apesar da capacidade de criação de imagens coloridas, tenha em mente que o DS9 não é um programa de edição avançada de imagens, ele é uma ferramenta de visualização e análise científica e se você deseja recursos estéticos mais avançados ou se quer combinar muitos frames para melhorar a relação sinal ruído de sua imagem deverá buscar outras alternativas.

A adição de novas funções sempre acrescenta uma maior complexidade de operação, por isso, no DS9 e em todas as ferramentas apresentadas a seguir acostume-se a ler a documentação e a aprender com usuários mais experientes em fóruns especializados.

O download do SAO Image DS9 pode ser feito no endereço: https://sites.google.com/cfa.harvard.edu/saoimageds9/download

Salsa J

O Salsa J é não é uma ferramenta profissional, mas incorpora funções de análise que podem ser utilizadas para tarefas mais avançadas em educação e em ciência cidadã.

Interface do Salsa J durante criação de imagem RGB a partir de arquivos FITS (EU-HOU).

É possível criar imagens RGB, medir magnitudes, tamanhos aparentes e analisar espectros. Sua interface é amigável e o programa roda bem mesmo em máquinas mais modestas.

Se você que um aplicativo leve, amigável e versátil e não faz questão de conhecer as ferramentas astronômicas utilizadas por profissionais, o Salsa J provavelmente vai fazer você muito feliz. Há muitos tutoriais e exemplos mostrando seu uso em sala de aula na educação básica.

O Salsa J e vários tutoriais estão disponíveis em: http://www.euhou.net/index.php/salsaj-software-mainmenu-9

Aladin

Aladin é um verdadeiro canivete suiço com mais funções do que o usuário médio jamais será capaz de sequer explorar. Ele é apresentado como um atlas celeste interativo que permite a visualização de imagens digitalizadas do céu de diversos levantamentos e sobrepor dados de catálogos e outros arquivos astronômicos, inclusive arquivos locais, além de acessas interativamente serviços de informações de objetos astronômicos como Simbad, VizieR e outras bases de dados para todos os objetos no campo.

Interface do Aladin 11 (Université de Strasbourg/CNRS)

O Aladin é o mais intimidador dos programas aqui apresentados e requer uma boa disposição para a consulta de sua documentação. Se seu objetivo é algo modesto como apenas criar uma imagem RGB a partir de arquivos FITS, optar pelo Aladin é algo como usar um canhão pra matar uma formiga. Ele certamente vai fazer o serviço, mas há opções mais econômicas para isso (e com curvas de aprendizado menos íngremes). Amamos o Aladin, mas achamos bem pouco adequado começar a usá-lo antes de dominar algumas conceitos que podem ser explorados em programas com interface mais limpa.

Mas se você realmente decidiu pela ousadia, pode baixá-lo em: https://aladin.u-strasbg.fr/

Um Recado Final

O fantástico mundo dos dados astronômicos reais está disponível para todos. Brincar, aprender e descobrir está ao alcance de qualquer pessoa com com um computador com acesso à internet e com conhecimento suficiente para operá-lo (você precisa ser capaz de instalar os programas e resolver pequenos problemas, comuns a esse tipo de tarefa, ou ter à disposição alguém que vá resolvê-los pra você) . Muitas vezes, as principais dúvidas apresentadas durante nossas oficinas se relacionam a tarefas do sistema operacional do usuário e uma vez sanadas, as tarefas de processamento dos dados segue sem tropeços.
A partir desse ponto o aprendizado vem com a experiência, mas a leitura de manuais é indispensável. A documentação destes softwares é bem completa e costuma cobrir a maior parte das dúvidas que você terá a começar a trabalhar com eles. Mergulhe sem medo nos manuais, eles serão seus companheiros se você pretender se tornar íntimo destes divertidos brinquedos que acabamos de apresentar!

Cometa Leonard já está visível em céus brasileiros: como localizá-lo no Stellarium Web

O Cometa C/2021 A1 (Leonard) já pode ser visto logo antes do nascer do Sol nos céus das regiões Norte e Nordeste do Brasil!

Nesse post, mostramos como utilizar o Stellarium Web (versão para navegador do simulador de céu Stellarium: https://stellarium-web.org/) para descobrir o melhor horário para observar o cometa da sua cidade.

Ao entrar no site, caso o Stellarium Web não encontre sua localização automaticamente, clique no botão inferior esquerdo para definir sua região no mapa. O botão da direita inferior abre os controles de data e horário.

Na madrugada de 06/12/2021, o cometa Leonard aparecerá no horizonte leste pouco antes do nascer do Sol, próximo à estrela Arcturus (é uma estrela bastante brilhante que você pode utilizar para se localizar no Stellarium e no céu).

Cometa Leonard no Stellarium Web: https://stellarium-web.org/skysource/Arcturus?fov=37.208&date=2021-12-06T07:10:07Z&lat=-10.18&lng=-48.33&elev=0

Assim que encontrá-lo, você pode selecionar o cometa com o mouse. O Stellarium Web abrirá uma janela à esquerda com as informações sobre visibilidade:

  • Magnitude: É o brilho aparente do cometa. Quanto menor o número, mais brilhante ele aparece no céu. Magnitude 6 é o limite de visão do olho humano em lugares livres de poluição luminosa.
  • Distance: Distância do cometa Leonard até a Terra em unidades astronômicas (1 AU é a distância média do Sol até a Terra).
  • Visibility: Período que o cometa permanece acima do horizonte da sua localização. Rise é a hora em que ele nasce no horizonte leste, e Set é a hora que ele se põe no horizonte oeste.

Quer saber mais sobre o Leonard e outros cometas? No dia 07/12/2021, terça-feira, às 20h estaremos ao vivo com o dr. Pedro Bernardinelli, descobridor do cometa gigante C/2014 UN271 (Bernardinelli-Bernstein) falando sobre esses objetos vindos dos confins do Sistema Solar! Ativa o lembrete: https://www.youtube.com/watch?v=UvXhNCFXw_c

Veja também:

Como Escolher um Telescópio

A aquisição mais procurada por entusiastas da observação do céu é definitivamente o primeiro telescópio. Instrumentos ópticos de qualidade infelizmente não são tão baratos, e não é raro que a frustração em mexer em um telescópio desnecessariamente complicado para um iniciante acabe o transformando num cabide de roupa no meio da sala. Por isso, escrevemos um guia para ajudar nos detalhes que precisam ser considerados ao se adquirir sem arrependimentos o primeiro telescópio, com dicas de fabricantes nacionais:

Primeira regra de ouro: aprenda o céu da sua região! Quanto mais você souber sobre os objetos que quer e pode ver, mais informação terá para auxiliar na escolha do modelo ideal. Aplicativos gratuitos de cartas celestes e simulação do céu: Stellarium, Carta Celeste, Sky Map. Para conferir a poluição luminosa da sua região: https://www.lightpollutionmap.info/. Além disso, observe se há muitas obstruções no horizonte como prédios e montanhas.

Captura de tela do aplicativo Stellarium.

Informe-se MUITO sobre os tipos de telescópios amadores e como funcionam. Você descobrirá que existem diversos modelos e a partir daí pode começar a refinar a sua procura de acordo com seu orçamento, necessidades e limitações. Já fizemos um post sobre os tipos de telescópios aqui: http://ceuprofundo.com/2020/12/31/conhecendo-os-tipos-de-telescopio/

Which Telescope Is Better: A Reflector Or Refractor?
Alguns tipos de telescópios. (Fonte: Astronomy Trek)

Há outras questões além do céu que devem ser consideradas, como se o telescópio precisa ser leve e prático para ser transportado (a casa tem escadas, por exemplo?) e quanto espaço há disponível para observação e para guardar o equipamento.

Binóculos são uma excelente opção para começar a prática da observação. Possuem preços mais acessíveis e são de fácil manuseio, permitindo que a observação e o estudo do céu sejam suas únicas preocupações no início.

“Até onde esse telescópio vê?”

O telescópio não trabalha com limites de distância, mas sim de brilho. Quanto mais brilhante o objeto aparece no céu, mais nítida será a imagem dele. Há objetos na nossa própria galáxia mais difíceis de observar do que outras galáxias.

Pense no telescópio como um balde de coletar luz para os nossos olhos. Quanto maior for o diâmetro do telescópio, mais luz ele captura e, consequentemente, mais definição e objetos menos brilhantes é possível ver com ele. O pessoal do DeepSkyWatch fez uma comparação muito boa entre os objetos vistos por diferentes telescópios e céus: http://www.deepskywatch.com/Articles/what-can-i-see-through-telescope.html.

Um dos recursos do Stellarium é a simulação de telescópios, no menu superior direito, com o qual é possível ter uma ideia de como um objeto aparece na imagem de acordo com as configurações do telescópio que você estiver considerando adquirir.

Captura do programa Stellarium. A opção de simulação de telescópios está circulada em vermelho.
Simulação do Aglomerado da Borboleta visto por um telescópio de 254mm de diâmetro e 1130mm de distância focal, com uma ocular de 25mm.

Além da imagem

O telescópio é composto por diversas partes. Uma delas é a montagem, a parte do telescópio que fica encaixada entre o tubo e o tripé – ela não é soldada, o que significa que você pode trocá-la por outra a qualquer momento.

No modelo azimutal, o telescópio fica livre para se movimentar para todos os lados, não tem segredo. O modelo equatorial tem vantagens, mas com um preço: é mais robusta de se manuear e tem movimentação mais trabalhosa.

Claro que todo mundo tem capacidade de aprender a usar a montagem equatorial! Mas se você for iniciante, talvez queira investir mais tempo explorando o céu do que se preocupando com montagens robustas e caras que talvez sejam desnecessárias para você no início. Recomenda-se começar com a mais simples (azimutal) e substitui-la no futuro caso seja uma necessidade do observador.

Image
Exemplos de montagens de telescópios.

Todo telescópio precisa de pelo menos uma ocular. Preste atenção se o telescópio já vem com uma ou se é vendida separadamente. São facilmente intercambiáveis e podem ser compradas em kit ou avulsas a qualquer momento. Não precisa comprar um lote inteiro de cara sem saber se são compatíveis com padrão do telescópio e se serão úteis para você.

Diferentes oculares. (Fonte: Wikipedia)

“Qual o aumento desse telescópio?”

A rigor, o telescópio aumenta o quanto você quiser. PORÉM, quanto maior o aumento, menor será a nitidez e qualidade da imagem. O termo utilizado é AUMENTO ÚTIL, que significa o quanto é possível aumentar a imagem sem que ela perca muita qualidade. Para calcular o aumento útil, multiplique o diâmetro do telescópio por 2.

O aumento depende também da ocular, e a conta é simples: distância focal do telescópio dividida pela distância focal da ocular. Sempre faça essa conta antes de comprar uma ocular. Se o resultado for maior que o aumento útil, há grande chance de se frustrar.

Image
Exemplo de diferentes aumentos e cálculo da magnificação. (Crédito: André Luiz da Silva)

No nosso exemplo do Aglomerado da Borboleta, temos um aumento de 1130mm/25mm = 45,2x.

CUIDADO com anúncios que prometem demais: “aumenta até 400x, 500x, 1000x!”. Se vir esse tipo de sensacionalismo, ligue o desconfiômetro na mesma hora. Anúncios ideais não prometem imagens perfeitas e mostram todas as especificações do telescópio sem rodeios.

Image

Marcas com boa qualidade e sem enganação com o consumidor: Celestron, Sky-Watcher, Orion, Meade, GSO.

Hoje, temos excelentes fabricantes brasileiros(!!!): Dario Pires, Sebastião Santiago Filho, Sandro Coletti, Rodolfo Langhi, Telescópios Matão. Os telescópios desses fabricantes são tão bons quanto os importados, e duram anos se você cuidar deles com carinho e do modo adequado.

Imagens Astronômicas: Os Pilares da Criação.

Os pilares da Criação. Uma região de formação estelar a cerca de 7000 anos luz, na Nebulosa da Águia (M16) em imagem composta a partir de dados de observações do telescópio Hubble.

Uma das imagens mais marcantes produzidas pelo telescópio espacial Hubble é o registro dos Pilares da Criação, uma vasta região de formação estelar na Nebulosa da Águia (M16).
Sua imagem mais famosa é composta por dados de observações realizadas pelo Hubble através de filtros que deixam passar apenas a luz nas frequências das emissões dos gases enxofre, hidrogênio e oxigênio ionizado.


Os detalhes visíveis nas colunas de hidrogênio molecular e o esplendor das cores na imagem processada são impressionantes e cativam a atenção de qualquer observador.
Mas hoje queremos mergulhar no interior dos Pilares e enxergar através do gás frio. Para isso, a solução é observar através de filtros que deixam passar apenas os comprimentos de onda mais longos da luz, na faixa dos raios infravermelhos, para os quais o telescópio Hubble também é sensível. O resultado é um belo complemento ao que temos na luz visível e revela o que se esconde sob o gás!

Mosaico dos Pilares da Criação, região de formação estelar na Nebulosa da Águia (M16) composto com dados de observações do telescópio Hubble na faixa infravermelha do espectro eletromagnético. [Dados: NASA/ESA/Hubble/STScI. Processamento: Wandeclayt M./Céu Profundo]
Gráficos de desempenho dos filtros opticos do telescópio Hubble no infravermelho. A observação da imagem anterior foi realizada pelo canal IR da câmera WFC3 (Wide Field Camera 3) do telescópio Hubble, utilizando o filtro F110W, um filtro optico que deixa passar apenas a radiação infravermelha na faixa entre 0.9 e 1.4 µm. [crédito: Space Telescope Science Institute (STScI)]

Para compor a imagem usamos o software gratuito SAO Image DS9. Disponível para os sistemas operacionais Linux, Mac OS X e Windows (download aqui).

Vamos agora ver como chegamos no resultado acima a partir das observações individuais.
O campo do sensor infravermelho na câmera WFC3 do Hubble registra uma área do céu de menos de 3 minutos de arco (isso é 10 vezes menor que o diâmetro aparente da Lua vista da Terra). Por isso, para enxergarmos toda a área dos pilares (que na verdade medem aproximadamente 5 anos-luz) precisamos reunir várias peças em um quebra cabeças.
A tarefa é razoavelmente simples, porque as imagens registram também as informações das coordenadas celestes da região observada e essa informação pode ser utilizada pelo DS9 para alinhar e unir corretamente as imagens em um mosaico.

Interface de busca da base de dados do Telescópio Hubble. Parâmetros: Target Name = M16, Radius (arcmin) = 10, Imagers = WFC3, Proposal ID = 13926, Filter/Gratings = F110W.

Buscaremos na interface de pesquisa (https://archive.stsci.edu/hst/search.php) arquivos de dados de imagem da nebulosa M16 (Target Name) num raio de 10 minutos de arco (Radius (arcmin)) , capturados com a câmera WFC3, através do filtro infravermelho de banda larga F110W (Filter/Gratings), dentro da proposta de observação 13926 (Proposal ID). Sugerimos a seleção, na janela seguinte, da extensão ‘drz‘, requisitando assim apenas arquivos calibrados e com geometria corrigida. Os arquivos serão disponibilizados em uma pasta num servidor ftp no link enviado para o email fornecido. O conjunto de imagens que requisitamos é composto pelas quatro imagens abaixo.


O sistema de coordenadas embutido nos dados é o que chamamos de WCS (World Coordinate System). É graças a ele que é possível identificar a posição de estrelas e outros objetos apenas movendo o cursor sobre a imagem no DS9.

Iniciaremos criando um frame em branco no DS9 (clique nos botões [frame] e [new] na barra de botões) e adicionaremos os arquivos FITS que formarão as peças de nosso quebra cabeças através do menu “File > Open as > WCS Mosaic Segment“.

Após selecionar cada arquivo a ser adicionado ao mosaico, selecione a opção WCS na nova janela de diálogo (figura abaixo) e clique em ok. Repita a operação para todas as imagens individuais.

Após carregar todas as imagens, clique no botão [scale] e na opção [log]. Em seguida, usando o menu superior, acesse “Scale > Scale Parameters…” e ajuste os parâmetros Low e High para os valores 10 e 3000, respectivamente. Você deverá chegar no resultado abaixo. É uma bela imagem, mas podemos melhorar a visualização mudando a escala de cores de ‘grey’ para ‘bb’, utilizando a barra de botões: [color] e [bb].

Por fim, chegamos em nossa versão da mais famosa nuvem molecular do universo! Os Pilares da Criação, agora em infravermelho! Você pode experimentar outras escalas e outros valores de parâmetros, comparando os resultados. Aqui não existem escolhas certas ou erradas, é apenas uma questão de evidenciar os aspectos que mais interessem na imagem. E por vezes o aspecto mais importante é a beleza do imagem final!

Visualização final no DS9, com opção de cor “bb”. A escala selecionada é “log”, com parâmetros Low = 10 e High = 3000. [Dados: Nasa/ESA/Hubble/STScI. Processamento: Wandeclayt M.]

Gaia – O mapeador dos céus.

Diagrama Hertzprung-Russel de 1 milhão de estrelas do catálogo Gaia EDR3 a menos de 200 parsecs.
Composição artística do satélite Gaia com a Via Láctea ao fundo. [créditos: ESA/ATG Medialab e ESO/S. Brunier]

O satélite Gaia não nos envia imagens exuberantes como o Telescópio Espacial Hubble, mas também se consagrou como um marco na história da astronomia, medindo com precisão sem precedentes o brilho, a posição, a distância e a velocidade de quase dois bilhões de estrelas.

Determinar a distância de objetos astronômicos é essencial para compreender as propriedades físicas desses objetos. Uma estrela que nos parece muito brilhante, pode na verdade ser um objeto modesto mas muito próximo de nós. Por outro lado, fontes que parecem apenas uma pequena estrela podem na verdade corresponder a uma galáxia inteira nos confins do universo observável. E o Gaia é o campeão na determinação destes dados que nos permitem calibrar nossas escalas astronômicas de distância, entender melhor a evolução estelar e estimar com mais precisão a própria idade do universo superando inclusive o já impressionante desempenho de seu antecessor, o satélite Hipparcos (1989-1993).

O catálogo final do Gaia estará disponível em 2022, mas três liberações públicas de dados parciais já foram realizadas – a última delas (Early Data Release 3 – EDR3) em dezembro de 2020. Os dados são públicos e os acessamos para criar o gráfico abaixo, conhecido como diagrama HR e fundamental para o entendimento da evolução das estrelas, utilizando dados de 1 milhão de estrelas do catálogo do Gaia, localizadas a menos de 200 parsecs.

O astrofísico Alexandre Oliveira, professor e pesquisador da Universidade do Vale do Paraíba, em São José dos Campos (SP), nos conta que “A excelente qualidade destes dados permite enxergar detalhes nunca antes percebidos, como a assinatura de tipos diferentes de Anãs Brancas, com núcleos ricos em Hidrogênio, Hélio ou Carbono, representados pelas três faixas estreitas no canto inferior esquerdo. Também é visível, na região das Gigantes Vermelhas, um adensamento de forma longa e diagonal conhecido como Red Clump, associado a estrelas de baixa massa que queimam Hélio em seus núcleos.

Diagrama HR de uma amostra de 1 milhão de estrelas localizadas a menos de 200 parsecs (652 anos luz) [créditos: Gaia/ESA/DPAC, Wandeclayt M./Céu Profundo]

Faça você mesmo: NGC 6302 – A Nebulosa da Borboleta.

NGC 6302 – A Nebulosa da Borboleta a partir de dados do Telescópio Espacial Hubble. [Dados de imagem: NASA/ESA/STScI, Processamento: Wandeclayt M./Ceu Profundo]

As imagens de objetos de céu profundo – galáxias, nebulosas e aglomerados estelares – produzidas com dados do telescópio espacial Hubble (HST) são tão fabulosas que acabam inspirando a pergunta: “Nossa, mas é uma foto mesmo? Dá pra observar ela assim?”

A dúvida é legítima e para ajudar a entender como nascem estas impressionantes visões astronômicas vamos compor juntos uma imagem da nebulosa planetária bipolar NGC 6302 – A Nebulosa da Borboleta – utilizando dados de arquivo do Hubble.

Primeiro ponto importante: as câmeras do Hubble não são coloridas. São sensores monocromáticos de alto desempenho, sensíveis a toda a faixa visível do espectro eletromagnético e a porções do infravermelho e do ultravioleta próximos.

Para compor imagens coloridas com os imageadores atualmente em operação no telescópio espacial – a WFC3 (Wide Field Camera 3) e a ACS (Advanced Camera for Surveys) – precisaremos combinar dados obtidos em observações separadas, cada uma delas utilizando um filtro diferente, que deixa passar apenas uma faixa (cor) da luz incidente.

Como o objeto a ser imageado é uma nebulosa, uma escolha comum de filtros é a que seleciona a luz emitida por alguns elementos abundantes em sua composição. Escolheremos filtros que deixam passar certos comprimentos de onda associados a átomos de hidrogênio, oxigênio e enxofre.

FiltroElemento
F502NO III (Oxigênio duplamente ionizado)
F658NH alfa
F673NS II (Enxofre ionizado)

Garimpando os dados

Temos então todas as informações que precisamos para fazer nossa busca por dados no arquivo do Hubble:

AlvoNGC 6302
CâmeraWFC3, ACS
FiltrosF502N, F658N, F673N
Dados para busca dos dados para composição da imagem da nebulosa NGC 6302.

Introduziremos esses dados na interface de pesquisa do arquivo do Hubble em https://archive.stsci.edu/hst/search.php

Interface de busca do arquivo do Telescópio Espacial Hubble.

O resultado dessa busca nos mostrará os dados arquivados de observações da NGC 6302 realizadas com as câmeras e filtros selecionados. Entre os resultados, encontramos um conjunto de exposições realizadas com a WFC3 em 13/03/2020, nos três filtros de interesse e com tempos longos de exposição (todos acima de 1000s). BINGO! São esses que vamos usar!

Resultados da busca. Os três arquivos selecionados são de uma mesma sequência de observação e utilizam os três filtros que nos interessam.

Requisitando os arquivos.

Antes de requisitar os dados, podemos visualizar uma prévia das imagens clicando sobre o nome dos arquivos. Este é um passo importante porque podem ocorrer falhas durante a observação, como problemas de guiagem do telescópio e estabilização da imagem, que resultem em dados inutilizáveis. Como cada arquivo individual pode ultrapassar os 200 MB, convém checar sua integridade antes do download.

Visualização prévia dos dados de imagem.

Após inspecionar cada um dos arquivos de interesse e de nos certificarmos que todos são aceitáveis, podemos requisitar os dados. Selecionamos os três arquivos e clicamos no botão [Submit marked data for retrieval from STDADS].

Requisição dos dados selecionados.

Na janela seguinte, configure o formato dos dados requisitados. Queremos apenas os dados já calibrados e com a extensão drc.

Você receberá uma confirmação de sucesso da requisição e um link de ftp para o download dos arquivos será enviado para o email indicado. Você pode acessar o servidor pelo navegador também, se não tiver um cliente de ftp em sua máquina. Salve os arquivos disponibilzados na pasta. Além dos arquivos de dados FITS, uma prévia em formato jpeg também estará disponível como referência.

E agora? O que faço com os arquivos?

Agora vamos criar a nossa composição RGB combinando os arquivos FITS que acabamos de baixar utilizando o software SAO Image DS9 (Disponível gratuitamente para Linux, Mac OS e Windows em https://sites.google.com/cfa.harvard.edu/saoimageds9/download).

  1. No DS9 crie um novo frame RGB ( utilize o menu Frame > New Frame RGB ou os botões [frame] e [rgb])
  2. Associaremos cada imagem a um dos canais RGB de acordo com o comprimento de onda do filtro utilizado, atribuindo ao canal vermelho (R) o filtro de maior comprimento de onda (F673N, SII), ao canal verde (G) o comprimento de onda intermediário (F658N, H alfa) e ao canal azul (B) o comprimento de onda mais curto (F502N, OIII).
  3. Selecione o canal ativo clicando na coluna Current na janela RGB. Em seguida abra o arquivo correspondente ao canal ativo utilizando o menu File > Open ou os botões [file] e [open] e repita a operação para os três canais.
  1. Ok, mas como saber que arquivo corresponde a cada canal? Você pode conferir na página com o resultado da busca, se ela ainda estiver aberta em seu navegador ou se quiser repetir a pesquisa, mas cada arquivo FITS carrega também um cabeçalho de metadados chamado Header que pode ser inspecionado dentro do DS9. Para inspecionar o header de um arquivo aberto clique nos botões [file] e [header] . Você verá um arquivo de texto como o da figura abaixo. Procure a informação “FILTER = “.
  1. Agora é só lembrar que R = F673N, G = F658N e B = F502N. Mas tem um detalhe aí… Estamos colocando o filtro F658N no canal G, mas na verdade a linha de emissão do hidrogênio alfa é também vermelha! Então é bom lembrar que o que aparece em verde na imagem é na realidade um outro tom de vermelho, mas com a nossa escolha de cores vai ficar bem mais fácil distinguir o que corresponde a cada filtro. Essa configuração é conhecida como “Hubble pallete” e se popularizou com a célebre imagem do Hubble: “Os Pilares da Criação”, que mostra detalhes da Nebulosa da Águia (M 16) com esse padrão de cores.
  2. Pronto! Agora que carregamos os três arquivos precisamos ajustar os histogramas. Comece com a imagem no canal R. Clique nos botões [scale] e [log] e em seguida acesse o menu Scale > Scale parameters…
  3. Você verá um histograma como o da imagem abaixo. Perceba que no gráfico, toda a informação está amontoada perto do zero, ou seja: está tudo muito escuro e vamos precisar “esticar” esse histograma. Introduza esses valores na janela: Low = 0.01 e High = 6.
  1. Repita esse procedimento com os canais G e B usando Low = 0.01 e High = 19. Você também pode experimentar outros valores e pode também tentar outras escalas além da [log]. É aqui que você pode dar seu toque pessoal na imagem. Como diz Rick Sanchez: “Às vezes a ciência é mais arte que ciência!“.
  2. O resultado pode ser algo como a imagem abaixo, mas não perca a chance de libertar o artista que existe em você! Brinque com parâmetros e escalas até encontrar uma combinação satisfatória.

E o nosso resultado final!

Depois de muitas experiências, ficamos felizes com o resultado da imagem abaixo. Mas para chegar nesse resultado a imagem passou por alguns passos adicionais em programas de edição de imagens. Você pode usar programas como o Photoshop ou o GIMP para fazer ajustes cosméticos na sua imagem, reduzindo ruídos, evidenciando detalhes, aplicando ajustes não lineares… E a verdade é que a gente nunca conclui a edição de uma imagem dessas. Sempre dá vontade de mexer um pouco mais, mas a gente acaba parando em algum ponto porque o arquivo do Hubble é enorme e o universo é ainda mais! E a gente já quer passar pro próximo objeto! Que tal uma galáxia na próxima tarefa?

NGC 6302 – A Nebulosa da Borboleta. Imagem RGB composta com dados do Telescópio Espacial Hubble (HST). [dados: NASA/ESA/STScI. processamento Wandeclayt M./Céu Profundo]

Criando Imagens Astronômicas com Telescópio Hubble

Imagem RGB do planeta Marte produzida com dados de arquivo do telescópio espacial Hubble [imagem: Hubble/STscI. processamento: Wandeclayt M.]

Que tal produzir imagens como esta do planeta Marte utilizando dados reais do telescópio espacial Hubble? Isto é não apenas possível como até relativamente simples. E vamos mostrar pra você, passo-a-passo, como pesquisar o arquivo do Hubble em busca de dados e como processá-los para gerar uma imagem colorida como esta.

Os dados do Hubble e de quase todos os grandes observatórios astronômicos são disponibilizados integralmente ao público após um período de exclusividade para o pesquisador que propôs a observação. Isto permite que novas descobertas sejam feitas por outros grupos de cientistas ao analisar os dados arquivados e isso inclui a possibilidade de seu uso por cientistas cidadãos.

Colocando a mão na massa!

Vamos mostrar agora um exemplo prático, fácil e rápido, que não requer prática nem tampouco habilidade, pra mostrar que qualquer criança brinca e se diverte com o telescópio espacial mais querido do mundo!

Marte e a Terra tiveram uma aproximação histórica em agosto de 2003, quando os dois planetas estiveram a menos de 56 milhões de km de afastamento. Que tal se procurarmos observações do Hubble nesse período para criar nossa imagem de Marte?

Para isso vamos acessar a interface de busca no arquivo do Hubble em

https://archive.stsci.edu/hst/search.php

Faremos uma busca por imagens do instrumento WFPC2 (Wide Field Planetary Camera 2), tendo como alvo o planeta Marte (Target Descrip: Mars) e início da observação após 20 de agosto de 2003 (Start Time: > 2003 aug 20). Escolhemos essa data porque a oposição ocorreu no dia 28 de agosto e a máxima aproximação no dia 27 de agosto, então qualquer imagem capturada aproximadamente uma semana antes ou após estes eventos pode ser interessante.

Seleção de parâmetros de busca no arquivo do Hubble.

Entre os resultados dessa busca, vemos que há observações bem promissoras próximas do nosso período de interesse. Vamos agora selecionar quais delas usaremos para compor nossa imagem!

Nosso objetivo é criar uma imagem com cores razoavelmente naturais de Marte.
Mas a câmera do Hubble é monocromática, assim como todas as câmeras astronômicas científicas de alto desempenho instaladas em telescópios para pesquisa. Mas se temos à nossa disposição apenas imagens originalmente em escala de cinza e queremos chegar numa imagem colorida, qual a magia necessária?

Escolhendo os ingredientes do bolo


O segredo para gerar uma imagem colorida a partir das imagens monocromáticas do Hubble – ou de qualquer outro telescópio – é atribuir as cores vermelha (R), verde (G) e azul (B) para imagens em tons de cinza e combiná-las num arquivo colorido RGB.

Isto funciona porque cada arquivo em tons de cinza registrou apenas uma “cor” da luz incidente. Escrevemos cor entre aspas porque na verdade algumas faixas de comprimento de onda registrados pela câmera nem caracterizam “cores” da maneira como as enxergamos. Afinal, que cor é infravermelho? Ou ultravioleta?

Mas vamos ao que interessa! Que arquivos usaremos para compor nossa imagem?
Nossa sugestão é usar os arquivos do dia 26 de agosto, registrados através dos filtros F631N (vermelho), F502N (verde) e F401M (azul). O horário de captura é uma informação importante também. Como Marte também está girando em torno de seu eixo, é importante que não haja um grande intervalo entre cada exposição, para que possamos sobrepor as três imagens sem que o movimento de rotação do planeta atrapalhe a composição.

Clicando no nome dos arquivos selecionados, uma imagem prévia é exibida para inspeção.
E se tudo parecer bem, podemos partir para a requisição dos arquivos originais.

Pré visualização de um dos resultados da busca no sistema de arquivos do Hubble.


Requisitando os arquivos originais

Após a inspeção dos arquivos selecionados, estamos prontos para baixar os dados para nosso processamento. No alto da tela, use o botão <submit marked data for retrieval from STDADS>.

Na tela seguinte, informe seu email, marque a opção “Calibrated” e selecione a extensão “c0m“. Clique no botão <Send retrieval request to ST-DADS>.

Se tudo deu certo, você verá uma tela de confirmação e logo receberá um email com o link para a pasta de download dos arquivos que você poderá acessar usando seu browser ou um cliente de ftp.

Tela de confirmação da requisição de arquivos do Hubble.

E onde eu coloco esses arquivos?

Excelente pergunta! Para abrir e manipular os arquivos FITS precisaremos do programa gratuito SAO Image DS9. Ele está disponível para os sistemas operacionais Linux, Mac OS e Windows no link abaixo.

https://sites.google.com/cfa.harvard.edu/saoimageds9/download

Agora que você instalou e baixou o DS9, podemos ir para a parte mais divertida de nossa tarefa.

No menu do DS9 clique em Frame > New Frame RGB.
Além da janela principal do DS9, a janela RGB será exibida:

Na primeira coluna (current) da janela RGB selecionamos que camada do arquivo está ativa e na segunda coluna (view) temos as caixas de seleção de visibilidade das camadas. Vamos manter a seleção atual e carregar o arquivo da camada vermelha (Red) de nossa composição. Podemos usar o menu File > Open, ou os botões <file> e <open> na barra de botões da interface gráfica, para carregar o arquivo correspondente à cor vermelha (Filtro F631N).

Certinho. Carregamos o arquivo. Mas talvez essa tela preta não seja exatamente o que você estava esperando. Calma! A informação está aí em algum lá! Vamos procurá-la!

Clique nos botões <scale> e <linear>, esses que estão em azul na janela acima. Agora vá no menu Scale > Scale Parameters. Você verá agora um histograma como o da janela abaixo:

Esse histograma nos mostra que toda a informação está concentrada nos tons mais escuros. Para tornar essa informação visível, mudaremos manualmente os limites Low e High. Colocamos os valores 200 (Low) e 2400 (High), como na janela abaixo, e clicamos em <Apply>.

E o resultado é este:

Agora temos a primeira camada de nossa imagem carregada e visível.
Em seguida, voltamos à janela RGB e marcamos na coluna current a camada verde (Green) e voltamos ao menu File > Open (ou aos botões na barra) para carregar o arquivo correspondente à cor verde (filtro F502N). Repetimos a operação marcando a camada azul (Blue) e carregando o arquivo correspondente à cor azul (filtro F401M).
Se necessário repita o procedimento que utilizamos na camada vermelha com os histogramas de cada camada.

É possível também que as imagens não estejam completamente alinhadas, como no exemplo abaixo. E precisaremos alinhá-las manualmente.

O formato FITS suporta informações de WCS (World Coordinate System) – o sistema de coordenadas celestes utilizado – o que é fundamental para alinhar imagens de estrelas e de objetos de céu profundo como galáxias e nebulosas. Mas no caso dos planetas, o sistema de coordenadas não vai nos ajudar muito, porque estes objetos se deslocam com relação ao fundo de estrelas. A alternativa aqui, já que Marte está centralizado em cada frame, é tentar fazer o alinhamento diretamente pelas bordas das imagens.

Na janela RGB, acesse o menu e selecione a opção align > image.

Se tudo der certo, as imagens estarão coincidentemente sobrepostas e este será o resultado:

É possível exportar a imagem final em vários formatos (tiff, jpeg, png, gif) no menu File > Save image.

Você pode continuar experimentando valores diferentes nos parâmetros de escala do histograma. Pode inclusive experimentar outros modos além do Linear. Você vai ver que cada mudança de parâmetro pode evidenciar ou suprimir certas características. Você pode também experimentar com imagens capturadas em outros filtros, acrescentando dados em infravermelho ou ultravioleta, por exemplo. Uma dica é atribuir as camadas R, G e B por ordem decrescente de comprimento de onda. Use o R para comprimentos de onda mais longos, G para intermediários e B para os comprimentos de onda mais curtos.

Deu pra notar que as possibilidades são infinitas, né? Então que tal explorar os arquivos e tentar outras composições? Nós vamos querer ver os resultados! Então não esquecer de marcar o @ceuprofundo quando postar suas imagens nas redes sociais!

Asteroides Potencialmente Perigosos. O que são?

Asteroides como Bennu, visto acima em um mosaico composto por 12 imagens registradas pela missão OSIRIS-REx da NASA, são verdadeiros fósseis espaciais, conservando suas características por bilhões de anos e podem nos ajudar a entender a formação dos planetas do Sistema Solar. [Crédito: NASA/Goddard/University of Arizona]

Você certamente já se deparou com manchetes como esta: “Asteroide maciço pode se chocar com a Terra no próximo ano, informa NASA”. E tudo bem se você se assustar num primeiro momento, mas pode relaxar, porque a intenção de uma manchete como essa é apenas assustar, chocar e ganhar cliques!

Mas o risco real de impactos com objetos potencialmente perigosos no futuro próximo é desprezível e você pode seguir a vida se preocupando com riscos mais imediatos, como doenças, atropelamentos e ativistas anti-vacina.

Pra falar sobre isso, recebemos um reforço de peso. Chamamos o astrofísico Cássio Barbosa para nos ajudar a contar um pouco da história desses pedregulhos espaciais.

Mas o que são esses pedregulhos?

Se você já fez uma pequena reforma em sua casa, sabe a quantidade de entulho que sobra no final da construção. No processo de formação do Sistema Solar não foi muito diferente. Com o agravante de não podermos chamar uma caçamba pra levar embora todos os cometas e asteroides que sobraram depois da formação dos planetas, planetas anões e satélites do Sistema Solar.

Cássio nos lembra que “Quem fez (e ainda faz) esse papel de limpeza foram o Sol, Júpiter e Saturno, corpos celestes de maior massa no Sistema Solar.
Ainda assim, há bastante entulho na forma de cometas e asteroides e estudar esses objetos é importante porque eles nos fornecem informações importantes sobre esse primitivo canteiro de obras que formou o Sistema Solar há 4.6 bilhões de anos.

Os cometas, compostos principalmente de gelo e poeira, são corpos voláteis que sublimam (passam do estado sólido diretamente para o gasoso) quando passam pelos pontos de suas órbitas mais próximos do Sol, produzindo uma nuvem de gás e íons que conferem a beleza que tanto encanta os observadores. Os asteroides são mais discretos. Corpos rochosos, sem cauda ou cabeleira, mas igualmente importantes para nos ajudar a entender a origem do Sistema Solar.

E onde mora o perigo?

O problema vem quando esses objetos possuem órbitas que cruzam a órbita terrestre. Mas isso não significa que objetos que “podem” colidir com a Terra irão de fato impactar nosso planeta.

Os objetos próximos à Terra são chamados de NEOs (Near Earth Objects) e são estudados e constantemente monitorados por observatórios profissionais especializados em pequenos corpos do Sistema Solar, como o projeto Catalina Sky Survey, que tem o objetivo de catalogar 90% da população estimada de objetos com mais de 140m de diâmetro.

Além das redes de alerta e detecção como o Catalina, dados observacionais de várias fontes se somam para caracterizar a massa, dimensões, albedo e magnitude dos NEOs.
Um dos elos nessa corrente é o Observatório Astronômico do Sertão de Itaparica (OASI) – uma unidade do Observatório Nacional, operando na cidade de Itacuruba (PE). Outra peça chave no estudo dos NEOs é a vasta rede de astrônomos cidadãos que alimentam as bases de dados profissionais com suas observações.

Mesmo sem um risco imediato de colisão, é importante conhecer nossa vizinhança e mapear os objetos que no longo prazo possam representar uma ameaça de impacto catastrófico. O importante aqui é conhecer com precisão o movimento de cometas e asteroides próximos e prever com grande antecedência suas trajetórias.

Esse cuidadoso e constante monitoramento dos NEOs nos permite estabelecer rapidamente os parâmetros orbitais de cada objeto recém descoberto, mas ainda assim é comum que inicialmente as incertezas sejam grandes o suficientes para garantir o sensacionalismo das manchetes!

Especificamente, para ser incluído na classe de Asteroides Potencialmente Perigosos, ou PHA (Potentially Hazardous Asteroids), um objeto precisa ter mais de 140m de diâmetro E atingir uma distância mínima de intersecção com a órbita a Terra (MOID – Minimum Orbit Intersection Distance) de 7,5 milhões de km ( isso equivale a aproximadamente 20 vezes a distância da Terra a Lua ).

Uma boa dica para abafar qualquer teoria da conspiração é ir direto à fonte. Os dados de monitoramento desses objetos são públicos e podem ser acessados pela página do Centro para Estudos de Objetos Próximos à Terra (CNEOS) da NASA/JPL.

Inclusive com uma lista das futuras aproximações disponível AQUI.

Tamanho do objetoFrequencia dos impactosEfeito
fragmentos de cometas e asteroidesdiáriosdesintegração na atmosfera (meteoros)
maior que 100m10 mil anosdestruição em escala local
maior que 1km>100 mil anosdestruição em escala global
Pequenos fragmentos de cometas e asteroides entram diariamente em nossa atmosfera, sem maiores consequências. Impacto com objetos maiores são muito mais raros.