No século XVII o astrônomo francês Charles Messier compilou um célebre catálogo de objetos astronômicos de aparência difusa, incluindo verdadeiras joias que até hoje atraem o fascinado olhar de astrônomos amadores ou os poderosos equipamentos de observatórios profissionais. Mas o catálogo de 110 objetos (alguns foram incorporados após a morte de Messier) nebulosos – que inclui a galáxia de Andrômeda (M31), a Grande Nebulosa de Órion (M42), a Nebulosa do Anel (M57) e outros objetos que povoam a calçada da fama da astronomia – deixa de fora alguns objetos belos e tão brilhantes que podem ser facilmente vistos através de pequenos telescópios, binóculos ou até a olho nu no céu do hemisfério sul.
A explicação para a omissão desses objetos no catálogo Messier é simples: Vivemos numa Terra esférica e esses objetos não são observáveis a partir da Europa. A exuberante nebulosa de Eta Carinae, o imponente aglomerado globular Omega Centauri e até galáxias inteiras como as Nuvens de Magalhães são um tesouro oculto para os habitantes das latitudes mais altas no hemisfério norte, mas se revelam em todo o seu esplendor para os olhos e telescópios do sul.
Mas para encontrar esses tesouros um primeiro passo é fundamental : Afaste-se da poluição luminosa das áreas urbanas. Busque áreas rurais ou suburbanas e evite qualquer iluminação excessiva apontada para o céu ou visível diretamente de seu ponto de observação. Quanto mais escuro o ambiente, melhor será a sua experiência e mais destacados os objetos astronômicos aparecerão, em contraste com o fundo do céu.
Agora, afastados da poluição luminosa, podemos iniciar a caça ao tesouro. Comece identificando a constelação de Crux, o Cruzeiro do Sul. Visível de todo o Brasil e facilmente reconhecível mesmo em céus urbanos, o Cruzeiro do Sul é um excelente ponto de partida para iniciar o reconhecimento do hemisfério sul celeste. Após identificarmos o Cruzeiro e suas cinco estrelas mais brilhantes – as quatro estrelas nas pontas dos braços da cruz, mais a “intrometida” – encontramos a leste duas estrelas muito brilhantes: alfa e beta da constelação do Centauro, ou alfa e beta centauri.
Utilizando uma boa carta celeste ou um aplicativo de celular (não vamos indicar nenhum aplicativo em particular, porque quase todos cumprem muito bem o seu papel) continue explorando o céu ao redor do Cruzeiro. Identifique mais a oeste as constelações de Carina e Vela. Ao sul, a Mosca. Veja também como a constelação do Centauro envolve a Cruz a leste, norte e oeste.
Se você estiver num local realmente escuro, olhando para essas regiões do céu, perceberá algumas manchas difusas no céu. Um longa faixa clara – a Via Láctea – se estende de leste a oeste. Pequenas regiões nebulosas pontuam essa faixa e são melhor percebidas se não as observarmos diretamente. Tente olhar para um ponto próximo e usar o canto do olho para perceber melhor essas manchinhas nebulosas. Essa técnica de visão periférica é algo que usamos também ao observar objetos mais tênues através da ocular do telescópio.
Você perceberá dezenas desses pontos. São nebulosas, galáxias e aglomerados estelares. Perceptíveis a olho nu como pequenas manchas, mas que revelam sua verdadeira natureza e todo seu esplendor quando observamos através de binóculos e telescópios.
Esse é um excelente primeiro passo na exploração dos tesouros do céu profundo ocultos no céu austral. Visite e revisite estes objetos e venha aqui compartilhar conosco!
Se você não recebeu uma bizarra mensagem falando sobre um nefasto “Fenômeno APHELION” em algum grupo do whatsapp, provavelmente ainda vai receber.
O boato pega carona em um termo astronômico e segue destilando alarmismo e pedindo compartilhamento! Mas o que é realmente o afélio (é esse o termo em português)? E tem ele algum efeito perceptível no clima?
A órbita terrestre, como a de todos os planetas, é uma elipse, ou seja, um círculo um pouco alongado. E por ser alongada, a órbita possui um ponto mais próximo ao Sol, que chamamos de periélio, e um ponto mais distante, que chamamos de afélio. O afélio não é, portanto, um fenômeno, mas apenas um ponto de nossa órbita por onde passamos todos os anos. O boato também passa longe da realidade quando diz que o afélio vai durar de “amanhã” (não há data na mensagem) até agosto. O afélio é apenas um ponto na órbita e não um fenômeno duradouro. Em 2022 passaremos por esse ponto no dia 4 de julho. E em 4 de janeiro, passamos pelo outro ponto importante, o periélio. Mais informações sobre essas datas podem ser encontradas no site Time and Date.
A mensagem acerta na distância em que a Terra se encontra do Sol no afélio (152 milhões de km), mas usa um valor absurdamente menor (e errado!) para o periélio, fazendo parecer que no afélio estamos muito mais distantes do Sol do que no resto do ano. Na verdade, a variação entre a distância média da Terra ao Sol e a distância no afélio e no periélio é de apenas 1,7% – o que é completamente imperceptível na prática. Os valores na tabela abaixo foram extraídos da Tabela de Dados Planetários do Centro Espacial Goddard da NASA e os valores da distância média ao Sol e do afélio e periélio da Terra estão destacados. Note que o valor de 90 milhões de km, atribuído ao periélio na mensagem, nos colocaria dentro da órbita de Vênus!
Vale lembrar também que não é o afélio que causa o inverno. Em julho, quando estaremos no inverno do hemisfério sul, será pleno verão no hemisfério norte.
As estações do ano são um efeito da inclinação do eixo de rotação da Terra em relação à sua órbita, que expõe mais diretamente um hemisfério aos raios solares do que o hemisfério oposto, de acordo com a época do ano.
Esperamos que com esses dados e referências todos sejam capazes de ajudar a freiar mais um boato de rápida circulação nos grupos de whatsapp e possam ajudar a espalhar a boa ciência. Podem compartilhar este artigo sem moderação e estamos sempre prontos para tirar dúvidas em nossas redes sociais: sigam www.twitter.com/ceuprofundo e www.instagram.com/ceuprofundo.
É impossível conter a admiração frente a uma imagem exuberante e colorida como esta da nebulosa planetária M57. A imagem é resultado de observações realizadas pelo Telescópio Espacial Hubble utilizando canal UVIS da câmera WFC3, a mais moderna a bordo do telescópio, instalada em 2009 em sua última missão de manutenção.
Criamos esta imagem utilizando os arquivos originais do telescópio Hubble, combinando dados obtidos através de filtros que selecionam que faixas de comprimentos de onda são transmitidos ao sensor da câmera. Os filtros são necessários porque as câmeras de alto desempenho utilizadas para o registro de imagens astronômicas profissionais geram apenas imagens em tons de cinza, registrando a intensidade, mas não a cor, da luz incidente em cada pixel. As imagens coloridas são na verdade uma combinação de várias imagens individuais em tons de cinza que foram colorizadas posteriormente. Apesar de não registrar cores, estes arquivos podem carregar muito mais informações: coordenadas celestes da região imageada, características do telescópio e do sensor – incluindo parâmetros de eficiência quântica do sensor, que permitem estimar com precisão a quantidade de fótons que foi efetivamente contada por cada pixel – e camadas adicionais de dados como tabelas e arquivos de calibração. Como os formatos tradicionais de imagem não possuem provisão para transportar todos estes dados, a comunidade astronômica desenvolveu seu próprio padrão de arquivo, capaz de lidar com todas essas camadas de informação e de armazenar uma vasta gama de valores por pixel, necessária para compreender as diferenças de luminosidade que muitas vezes precisam ser registradas em uma única imagem sem perda de informação.
Um Formato de Arquivo Dedicado para a Astronomia
O formato de arquivo criado e adotado pela comunidade como padrão para dados e imagens astronômicas é o FITS – Flexible Image Transport System (documentação em https://fits.gsfc.nasa.gov/) e requer ferramentas e aplicativos especiais para sua visualização e análise.
Os dados no formato FITS dos telescópios espaciais e observatórios profissionais em solo são disponibilizados em repositórios públicos abertos para a comunidade científica e para a ciência cidadã. Isso significa que você pode acessar, por exemplo, o arquivo de imagens dos telescópios que integram a rede Las Cumbres Observatory (https://lco.archive.org) e localizar, baixar e processar dados reais de observação. Para isso você precisará de um aplicativo com suporte ao formato FITS e se você ainda não usa nenhum dos apresentados nesta lista https://fits.gsfc.nasa.gov/fits_viewer.html podemos sugerir algumas opções.
FITS Liberator
Uma das opções mais simples para visualizar e converter arquivos FITS para formatos de imagem tradicionais (JPEG, PNG, TIFF…) é o FITS Liberator.
O FITS Liberator é talvez a opção mais simples se a ideia é apenas visualizar e exportar os arquivos FITS para um editor de imagem tradicional. Ele permite também visualizar o cabeçalho (FITS Header) que traz informações importantes sobre o arquivo (filtros utilizados, tempo de exposição, coordenadas da imagem e do observatório, telescópio e câmera que originaram o arquivo…). O download da versão mais recente pode ser feito em https://noirlab.edu/public/products/fitsliberator/ A versão 3.0, anterior à atual, possui alguns recursos úteis que foram suprimidos na versão 4.0. Isso simplificou a interface, mas a ausência da função ‘auto scaling’ que fazia um ajuste automático dos níveis de preto e branco na imagem dificulta a vida dos iniciantes. Mas a versão 3.0 continua disponível em: https://noirlab.edu/public/products/fitsliberator/download-past-versions/
SAO Image DS9
O SAO Image DS9 é uma ferramenta usadas por profissionais e por isso engloba funções avançadas de análise de imagens. É possível determinar coordenadas (astrometria) e medir magnitudes (fotometria) , traçar contornos, criar animações… mas tudo isso dentro de uma interface enxuta que não confunde os marinheiros (ou astrônomos) de primeira viagem. Profissionais e usuários experientes usam o DS9 principalmente através da linha de comando, integrado aos ambientes IRAF ou PyRAF.
Para iniciantes, a mais importante adição é a capacidade de combinar arquivos em camadas associadas às cores vermelha, verde e azul, criando assim imagens RGB coloridas. Recurso que pode ser muito útil para atividades educacionais com dados reais de telescópios.
O SAO Image DS9 é o nosso visualizador preferido e é o que utilizamos em nossas oficinas. Ele vem de uma longa linhagem que teve origem com o SAO Image em 1990. Uma segunda geração do software foi batizada de SAO TNG (numa referência ao seriado de ficção científica Star Trek – The Next Generation). A geração seguinte aproveitou o embalo e também pegou emprestado o nome de uma série derivada de Jornada nas Estrelas: Star Trek – Deep Space 9, chegando assim ao nome do nosso querido SAO Image DS9.
Apesar da capacidade de criação de imagens coloridas, tenha em mente que o DS9 não é um programa de edição avançada de imagens, ele é uma ferramenta de visualização e análise científica e se você deseja recursos estéticos mais avançados ou se quer combinar muitos frames para melhorar a relação sinal ruído de sua imagem deverá buscar outras alternativas.
A adição de novas funções sempre acrescenta uma maior complexidade de operação, por isso, no DS9 e em todas as ferramentas apresentadas a seguir acostume-se a ler a documentação e a aprender com usuários mais experientes em fóruns especializados.
O Salsa J é não é uma ferramenta profissional, mas incorpora funções de análise que podem ser utilizadas para tarefas mais avançadas em educação e em ciência cidadã.
É possível criar imagens RGB, medir magnitudes, tamanhos aparentes e analisar espectros. Sua interface é amigável e o programa roda bem mesmo em máquinas mais modestas.
Se você que um aplicativo leve, amigável e versátil e não faz questão de conhecer as ferramentas astronômicas utilizadas por profissionais, o Salsa J provavelmente vai fazer você muito feliz. Há muitos tutoriais e exemplos mostrando seu uso em sala de aula na educação básica.
Aladin é um verdadeiro canivete suiço com mais funções do que o usuário médio jamais será capaz de sequer explorar. Ele é apresentado como um atlas celeste interativo que permite a visualização de imagens digitalizadas do céu de diversos levantamentos e sobrepor dados de catálogos e outros arquivos astronômicos, inclusive arquivos locais, além de acessas interativamente serviços de informações de objetos astronômicos como Simbad, VizieR e outras bases de dados para todos os objetos no campo.
O Aladin é o mais intimidador dos programas aqui apresentados e requer uma boa disposição para a consulta de sua documentação. Se seu objetivo é algo modesto como apenas criar uma imagem RGB a partir de arquivos FITS, optar pelo Aladin é algo como usar um canhão pra matar uma formiga. Ele certamente vai fazer o serviço, mas há opções mais econômicas para isso (e com curvas de aprendizado menos íngremes). Amamos o Aladin, mas achamos bem pouco adequado começar a usá-lo antes de dominar algumas conceitos que podem ser explorados em programas com interface mais limpa.
O fantástico mundo dos dados astronômicos reais está disponível para todos. Brincar, aprender e descobrir está ao alcance de qualquer pessoa com com um computador com acesso à internet e com conhecimento suficiente para operá-lo (você precisa ser capaz de instalar os programas e resolver pequenos problemas, comuns a esse tipo de tarefa, ou ter à disposição alguém que vá resolvê-los pra você) . Muitas vezes, as principais dúvidas apresentadas durante nossas oficinas se relacionam a tarefas do sistema operacional do usuário e uma vez sanadas, as tarefas de processamento dos dados segue sem tropeços. A partir desse ponto o aprendizado vem com a experiência, mas a leitura de manuais é indispensável. A documentação destes softwares é bem completa e costuma cobrir a maior parte das dúvidas que você terá a começar a trabalhar com eles. Mergulhe sem medo nos manuais, eles serão seus companheiros se você pretender se tornar íntimo destes divertidos brinquedos que acabamos de apresentar!
O Cometa C/2021 A1 (Leonard) já pode ser visto logo antes do nascer do Sol nos céus das regiões Norte e Nordeste do Brasil!
Nesse post, mostramos como utilizar o Stellarium Web (versão para navegador do simulador de céu Stellarium: https://stellarium-web.org/) para descobrir o melhor horário para observar o cometa da sua cidade.
Ao entrar no site, caso o Stellarium Web não encontre sua localização automaticamente, clique no botão inferior esquerdo para definir sua região no mapa. O botão da direita inferior abre os controles de data e horário.
Na madrugada de 06/12/2021, o cometa Leonard aparecerá no horizonte leste pouco antes do nascer do Sol, próximo à estrela Arcturus (é uma estrela bastante brilhante que você pode utilizar para se localizar no Stellarium e no céu).
Assim que encontrá-lo, você pode selecionar o cometa com o mouse. O Stellarium Web abrirá uma janela à esquerda com as informações sobre visibilidade:
Magnitude: É o brilho aparente do cometa. Quanto menor o número, mais brilhante ele aparece no céu. Magnitude 6 é o limite de visão do olho humano em lugares livres de poluição luminosa.
Distance: Distância do cometa Leonard até a Terra em unidades astronômicas (1 AU é a distância média do Sol até a Terra).
Visibility: Período que o cometa permanece acima do horizonte da sua localização. Rise é a hora em que ele nasce no horizonte leste, e Set é a hora que ele se põe no horizonte oeste.
Quer saber mais sobre o Leonard e outros cometas? No dia 07/12/2021, terça-feira, às 20h estaremos ao vivo com o dr. Pedro Bernardinelli, descobridor do cometa gigante C/2014 UN271 (Bernardinelli-Bernstein) falando sobre esses objetos vindos dos confins do Sistema Solar! Ativa o lembrete: https://www.youtube.com/watch?v=UvXhNCFXw_c
O brilho do aguardado cometa C/2021 A1 (Leonard) segue escalando, nos levando a crer que ele de fato vai entregar todo o espetáculo que vem prometendo para a última quinzena de 2021.
Na madrugada de 2 de dezembro capturamos o que pode ser a primeira imagem do Leonard feita em solo brasileiro. O cometa aparece na direção da constelação de Canes Venatici (Cães de Caça) e foi registrado com câmera DSLR numa montagem motorizada Star Adventurer 2i numa exposição de 10s, ISO 800 com objetiva 85mm f/1.5 em uma rara brecha entre as nuvens em Alcântara, no Maranhão.
E dá pra confiar?
Cometas se comportam de maneira surpreendente e imprevisível. Podem sofrer aumentos abruptos de brilho ou podem se fragmentar e desaparecer rapidamente. Mas o Leonard tem se mantido bem comportado. A sequência de imagens abaixo (capturadas pela nossa equipe utilizando telescópios remotos em 8 de novembro e 1º de dezembro) mostra a clara evolução do Leonard, com o desenvolvimento da cauda e da cabeleira e o nítido aumento de brilho. As imagens foram realizadas com o mesmo instrumento e representam o mesmo campo do céu.
Ao contrário do cometa C/2020 F3 NEOWISE, que em julho de 2020 privilegiou observadores no hemisfério norte, o cometa Leonard se aproxima de seu periélio no dia 3 de janeiro de 2022 em uma trajetória que favorece observadores ao sul da linha do equador. Além disso a posição relativa entre a Terra, o cometa e o Sol potencializa o efeito de espalhamento da luz solar na cauda de poeira podendo torná-lo ainda mais brilhante, a depender da quantidade de poeira liberada pelo núcleo.
Vale lembrar que o cometa é essencialmente uma grande massa de gelo sujo e que a sublimação desse gelo (a passagem direta do estado sólido para o gasoso) forma a cabeleira e a cauda características dos cometas. A presença de gás ionizado e poeira dá origem a duas caudas distintas: a cauda iônica, com brilho verde azulado, e a cauda de poeira, que nos parece amarelada, refletindo e espalhando a luz do Sol. As caudas são sopradas pelo Sol e por isso apontam sempre na direção oposta à nossa estrela. Ao se afastar do Sol a cauda segue à frente do cometa.
O brilho que observamos tem então duas componentes principais: luz emitida pelo plasma (gás ionizado) e luz refletida pela poeira. A luz refletida pela superfície do núcleo conta pouco, já que o núcleo mede apenas alguns quilômetros, enquanto a cabeleira (coma) mede dezenas de milhares de quilômetros mas podendo atingir diâmetros comparáveis ao do Sol (mais de 1 milhão de quilômetros).
E quando vamos poder vê-lo?
O brilho do cometa não é a única variável importante aqui. Sua elevação acima do horizonte afeta nossa percepção, e A POLUIÇÃO LUMINOSA é outro grande inimigo da observação de objetos astronômicos de brilho tênue como os cometas. Quando dizemos que podemos observar objetos com magnitude mais brilhante que 6, estamos falando de observadores em céus escuros, longe do excesso de iluminação dos centros urbanos e observando em um ambiente onde a iluminação local não interfira na adaptação visual. Então, mesmo que você se desloque para uma área rural, nada de observar sob postes, ou nas proximidades de refletores e holofotes que possam ser vistos diretamente. Também evite olhar para telas de dispositivos eletrônicos. Nestas condições ideais – sem poluição luminosa e com a vista adaptada ao escuro – não apenas a experiência de observação do cometa é potencializada, mas também muitos objetos de céu profundo como nebulosas, galáxias e aglomerados estelares se tornam visíveis a olho nu.
Na primeira semana de dezembro o cometa segue baixo no horizonte leste ao nascer do Sol, podendo ser fotografado ou observado com pequenos instrumentos, mas ainda não a olho nu. Para observá-lo com seus próprios olhos, recomendamos que a partir do dia 17 de dezembro, 1 hora após o pôr do Sol, o cometa seja procurado sobre o horizonte oeste. Binóculos são o instrumento ideal para essa observação, permitindo a observação de um grande campo e não apenas de uma pequena região ao redor do cometa.
Em nossas redes sociais temos atualizações diárias da posição e brilho do C/2021 A1 Leonard e mapas e dicas de observação. Então se ainda não nos segue, corre lá pra não perder nenhum detalhe da visita do Leonard ao nosso cantinho no Sistema Solar:
Em 19 de novembro de 2021 teremos o eclipse lunar parcial mais longo em quase 600 anos, mas infelizmente ele será pouco visível no Brasil.
Um eclipse lunar ocorre quando a Lua atravessa a sombra projetada pela Terra no espaço. A sombra é dividida em duas regiões: penumbra (borda menos escura da sombra) e umbra (região mais escura e central).
Por conta disso os = eclipses lunares são classificados em penumbral (quando a Lua atravessa a penumbra – posição 2 no desenho abaixo), parcial (quando parte da Lua atravessa a umbra – posição 3) e total (quando toda a Lua atravessa a umbra – posição 4).
No dia 19, parte da Lua atravessará a penumbra e, em seguida, a umbra. Portanto, teremos uma fase penumbral, que praticamente não dá pra notar a olho nu, e em seguida um eclipse parcial.
Apesar de ser o mais longo eclipse parcial lunar em séculos a maior parte do Brasil acompanhará apenas o início do eclipse, já que a Lua já vai ter se posto no horizonte quando o fenômeno atingir seu ponto máximo.
A fase penumbral será visível em praticamente todo o Brasil (ou pelo menos onde as condições climáticas forem favoráveis), começando às 3:02 da manhã (horário de Brasília), quando a Lua começa a adentrar a região da penumbra.
Esta etapa do eclipse é bastante sutil, observadores mais acostumados podem perceber a Lua um pouco escurecida em relação à Lua Cheia comum. A imagem abaixo mostra uma comparação entre a Lua Cheia antes do eclipse (esquerda) e durante um eclipse penumbral (direita).
Às 4:18 (horário de Brasília) a Lua começa a entrar na região da umbra, dando início ao eclipse parcial, visível de praticamente todo o território brasileiro. O ponto máximo acontece às 6:02 e será visível em regiões do Norte e Centro-Oeste do Brasil, e ainda estará acontecendo quando a Lua desaparecer no horizonte oeste.
Selecionamos algumas capitais localizadas em diversas longitudes para mostrar a visibilidade do eclipse pelo país. Para verificar horários, visibilidade e aspecto do eclipse em sua localização digite o nome da sua cidade no campo “Eclipse lookup” da página dedicada ao eclipse no site Time and Date: https://www.timeanddate.com/eclipse/lunar/2021-november-19.
Não desanime e marque na agenda!
Em 15 de maio de 2022 haverá um eclipse total da Lua, e o Brasil INTEIRO está na melhor posição de visibilidade do evento!
Quando William Herschel descobriu Urano com seu telescópio refletor de 6 polegadas em 1781 não estava apenas fazendo a primeira descoberta de um planeta na era dos telescópios, estava revelando uma nova família de objetos em nosso sistema solar. Urano e seu vizinho Netuno (descoberto em 1646 a partir do estudo de anomalias na trajetória orbital de Urano) possuem diâmetro aproximadamente 4 vezes maior que o da Terra e não se aproximam do gigantismo de seus primos Júpiter (11,2 diâmetros terrestres) e Saturno (9,45 diâmetros terrestres). Compostos por núcleos rochosos muito densos e com aproximadamente o tamanho da Terra, girando com período de aproximadamente 17h (Urano) e 16h (Netuno), ambos os planetas possuem atmosferas ricas em hidrogênio molecular e campos magnéticos com polos muito desalinhados com relação ao eixo de rotação.
Mas Urano continuou se revelando surpreendente ainda no século XX. Em 1977, durante as observações da ocultação de uma estrela pelo planeta, percebeu-se que 40 minutos antes e 40 minutos após a ocultação, o brilho da estrela sofreu uma série de variações consistentes com a presença de um sistema de anéis em volta do planeta. Até então, apenas os anéis de Saturno eram conhecidos. Em 1979, anéis também seriam observados em Júpiter pela sonda Voyager 1 e em 1989 a Voyager 2 confirmaria a existência de anéis também em Netuno.
Apesar de seu tênue sistema de anéis não ser detectável diretamente em observações em luz visível por telescópios terrestres, é possível visualizá-los quando observamos no infravermelho.
Outra peculiaridade Uraniana é a inclinação de seu eixo de rotação! O planeta está “deitado” em seu plano orbital. A inclinação de seu eixo é de 98º em relação ao plano da órbita. Esta inclinação causa em Urano as mais extremas estações do Sistema Solar. Durante seu período de translação de aproximadamente 84 anos terrestres, cada estação dura 21 anos. Nos solstícios, o eixo de Urano aponta diretamente para o Sol e um observador situado no polo do hemisfério onde é verão veria o Sol sobre sua cabeça durante todo o dia!
Você certamente já se deparou com manchetes como esta: “Asteroide maciço pode se chocar com a Terra no próximo ano, informa NASA”. E tudo bem se você se assustar num primeiro momento, mas pode relaxar, porque a intenção de uma manchete como essa é apenas assustar, chocar e ganhar cliques!
Mas o risco real de impactos com objetos potencialmente perigosos no futuro próximo é desprezível e você pode seguir a vida se preocupando com riscos mais imediatos, como doenças, atropelamentos e ativistas anti-vacina.
Pra falar sobre isso, recebemos um reforço de peso. Chamamos o astrofísico Cássio Barbosa para nos ajudar a contar um pouco da história desses pedregulhos espaciais.
Mas o que são esses pedregulhos?
Se você já fez uma pequena reforma em sua casa, sabe a quantidade de entulho que sobra no final da construção. No processo de formação do Sistema Solar não foi muito diferente. Com o agravante de não podermos chamar uma caçamba pra levar embora todos os cometas e asteroides que sobraram depois da formação dos planetas, planetas anões e satélites do Sistema Solar.
Cássio nos lembra que “Quem fez (e ainda faz) esse papel de limpeza foram o Sol, Júpiter e Saturno, corpos celestes de maior massa no Sistema Solar.“ Ainda assim, há bastante entulho na forma de cometas e asteroides e estudar esses objetos é importante porque eles nos fornecem informações importantes sobre esse primitivo canteiro de obras que formou o Sistema Solar há 4.6 bilhões de anos.
Os cometas, compostos principalmente de gelo e poeira, são corpos voláteis que sublimam (passam do estado sólido diretamente para o gasoso) quando passam pelos pontos de suas órbitas mais próximos do Sol, produzindo uma nuvem de gás e íons que conferem a beleza que tanto encanta os observadores. Os asteroides são mais discretos. Corpos rochosos, sem cauda ou cabeleira, mas igualmente importantes para nos ajudar a entender a origem do Sistema Solar.
E onde mora o perigo?
O problema vem quando esses objetos possuem órbitas que cruzam a órbita terrestre. Mas isso não significa que objetos que “podem” colidir com a Terra irão de fato impactar nosso planeta.
Os objetos próximos à Terra são chamados de NEOs (Near Earth Objects) e são estudados e constantemente monitorados por observatórios profissionais especializados em pequenos corpos do Sistema Solar, como o projeto Catalina Sky Survey, que tem o objetivo de catalogar 90% da população estimada de objetos com mais de 140m de diâmetro.
Além das redes de alerta e detecção como o Catalina, dados observacionais de várias fontes se somam para caracterizar a massa, dimensões, albedo e magnitude dos NEOs. Um dos elos nessa corrente é o Observatório Astronômico do Sertão de Itaparica (OASI) – uma unidade do Observatório Nacional, operando na cidade de Itacuruba (PE). Outra peça chave no estudo dos NEOs é a vasta rede de astrônomos cidadãos que alimentam as bases de dados profissionais com suas observações.
Mesmo sem um risco imediato de colisão, é importante conhecer nossa vizinhança e mapear os objetos que no longo prazo possam representar uma ameaça de impacto catastrófico. O importante aqui é conhecer com precisão o movimento de cometas e asteroides próximos e prever com grande antecedência suas trajetórias.
Esse cuidadoso e constante monitoramento dos NEOs nos permite estabelecer rapidamente os parâmetros orbitais de cada objeto recém descoberto, mas ainda assim é comum que inicialmente as incertezas sejam grandes o suficientes para garantir o sensacionalismo das manchetes!
Especificamente, para ser incluído na classe de Asteroides Potencialmente Perigosos, ou PHA (Potentially Hazardous Asteroids), um objeto precisa ter mais de 140m de diâmetro E atingir uma distância mínima de intersecção com a órbita a Terra (MOID – Minimum Orbit Intersection Distance) de 7,5 milhões de km ( isso equivale a aproximadamente 20 vezes a distância da Terra a Lua ).
Inclusive com uma lista das futuras aproximações disponível AQUI.
Tamanho do objeto
Frequencia dos impactos
Efeito
fragmentos de cometas e asteroides
diários
desintegração na atmosfera (meteoros)
maior que 100m
10 mil anos
destruição em escala local
maior que 1km
>100 mil anos
destruição em escala global
Pequenos fragmentos de cometas e asteroides entram diariamente em nossa atmosfera, sem maiores consequências. Impacto com objetos maiores são muito mais raros.