Desde 1998, a Divisão de Astrofísica do Instituto Nacional de Atividades Espaciais (INPE) organiza o Curso de Introdução à Astronomia e Astrofísica (CIAA), voltado para professores do ensino fundamental e médio e para estudantes de graduação em Ciências Exatas.
Em suas 25 edições, o CIAA se consolidou como um importante curso de formação e atualização para professores e futuros cientistas em um ambiente imersivo, em contato com pesquisadores envolvidos em alguns dos mais importantes projetos de pesquisa e desenvolvimento em Astronomia do Brasil.
Com um conteúdo atual e abrangente, o curso desperta grande interesse por suas vagas a cada edição. Suas notas de aula são uma valiosa referência e vê-las lançadas em formato de livro, com organização do Dr. André Milone (Divisão de Astrofísica/INPE), é motivo de alegria para os interessados no tema que carecem de literatura em português.
Os três volumes da coleção Introdução à Astronomia e Astrofísica lançados nesta quinta-feira (31/10) cobrem todo o programa do CIAA e estão disponíveis gratuitamente em formato PDF. Baixe nos links abaixo:
Volume 1 – Astronomia no dia a dia, Astrofísica Observacional, O Sistema Solar, Habitabilidade Cósmica e a Possibilidade de Vida em Outros Locais do Universo.
Volume 2 – O Sol, Formação de Estrelas, A Vida das Estrelas, Estágios Finais de Estrelas
Volume 3 – Galáxias, Cosmologia, Astrofísica de Ondas Gravitacionais.
Um mês repleto de encontros planetários visíveis de todo o Brasil, com um eclipse solar visível apenas no Hemisfério Norte e com o promissor cometa 12P/Pons-Brooks chegando ao periélio. Prepare a agenda para não perder nenhum dos espetáculos em cartaz no céu durante o mês de abril!
Calendário Astronômico
As efemérides foram computadas usando as bibliotecas astropy e astroquery em scripts Python e o software Occult v4.
Data Evento
2024-04-01 05h - Lua no ponto mais ao sul (-28.6°)
2024-04-01 19h - Mercúrio estacionário
2024-04-02 00h - QUARTO MINGUANTE
2024-04-03 09h - Plutão 2.1°N da Lua
2024-04-03 10h - Vênus 0.3°S de Netuno
2024-04-06 03h - Marte 1.7°N da Lua
2024-04-06 07h - Saturno 1.0°N da Lua
2024-04-07 05h - Netuno 0.3°N da Lua
2024-04-07 13h - Vênus 0.4°S da Lua
2024-04-07 14h - Lua no perigeu
2024-04-08 15h - LUA NOVA
2024-04-08 - Eclipse Solar - Não visível do Brasil.
2024-04-08 23h - Mercúrio 1.9°N da Lua
2024-04-10 16h - Júpiter 3.7°S da Lua
2024-04-10 17h - Marte 0.4°N de Saturno
2024-04-10 19h - Urano 3.4°S da Lua
2024-04-11 19h - Mercúrio em conjunção inferior.
2024-04-13 19h - Lua no ponto mais ao norte (28.6°)
2024-04-15 11h - Pollux 1.5°N da Lua
2024-04-15 16h - QUARTO CRESCENTE
2024-04-18 11h - Regulus 3.3°S da Lua
2024-04-19 07h - Mercúrio 1.7°N de Vênus
2024-04-19 23h - Lua no apogeu
2024-04-20 23h - Júpiter 0.5°S de Urano
2024-04-21 00h - Cometa 12P/Pons-Brooks no periélio.
2024-04-23 00h - Spica 1.3°S da Lua
2024-04-23 20h - LUA CHEIA
2024-04-24 05h - Mercúrio estacionário
2024-04-26 17h - Antares 0.3°S da Lua
2024-04-28 11h - Lua no ponto mais ao sul (-28.5°)
2024-04-29 01h - Marte 0.1°N de Netuno
2024-04-30 15h - Plutão 2.0°N da Lua
ABRIL NA HISTÓRIA
--------------------------------------------------
7 - Missões Espaciais: Mars Odyssey foi lançada em 7 de abril de 2001.
10 - Descobertas/Eventos: Em 2019, a primeira imagem de um buraco negro foi publicada pelo Event Horizon Telescope.
10 - Missões Espaciais: BepiColombo realizou um sobrevoo da Terra em 10 de abril de 2020 aproveitando a gravidade terrestre para ganhar energia em sua jornada até Mercúrio, com entrada em órbita programada para 2025.
11 - Missões Espaciais: Apollo 13 foi lançada em 11 de abril de 1970.
12 - Astrônomos e Físicos: Charles Messier morre em Paris, em 12 de abril de 1730, aos 86 anos. Seu catálogo de objetos nebulosos é uma referência para astrônomos amadores.
12 - Missões Espaciais: STS-1 Columbia, o primeiro voo do Programa de Ônibus Espaciais da NASA, lançado em 12 de abril de 1981.
12 - Missões Espaciais: Yuri Gagarin - Vostok 1, em 12 de abril de 1961, tornou Yuri Gagarin o primeiro ser humano a viajar para o espaço.
14 - Astrônomos e Físicos: Christiaan Huygens nasceu em 14 de abril de 1629.
17 - Descobertas/Eventos: Em 2014, astrônomos anunciaram a descoberta do exoplaneta Kepler-186f. Primeiro planeta de dimensões comparadas à Terra encontrado na zona habitável de uma estrela.
23 - Astrônomos e Físicos: Max Planck nasceu em 23 de abril de 1858.
24 - Missões Espaciais: Telescópio Espacial Hubble foi lançado em 24 de abril de 1990.
25 - Astrônomos e Físicos: Guglielmo Marconi nasceu em 25 de abril de 1874.
Apesar do padre brasileiro Landell de Moura ter realizado com sucesso experimentos com telecomunicações via ondas de rádio nos primeiro anos da década de 1890, Marconi é considerado mundialmente como o pioneiro na radiotelegrafia desenvolvendo equipamentos que dariam origem a comunicação por rádio moderna.
O Cometa Pons-Brooks sobe ao palco!!
A órbita da Terra e a dos demais planetas está contida aproximadamente no mesmo plano, a eclíptica. Assim, é sempre nas proximidades dessa faixa do céu definida pela órbita terrestre que encontraremos todos os planetas e muitos dos outros objetos do Sistema Solar. É comum no entanto encontrarmos cometas com órbitas muito inclinadas em relação ao plano da eclíptica. É o caso do cometa 12P/Pons-Brooks que tem sua órbita com inclinação de 74º em relação ao plano da órbita terrestre e quase que inteiramente ao norte da eclíptica. As consequências dessa geometria e do fato de vivermos em um planeta esférico é que nos meses que antecedem o periélio, a máxima aproximação com o Sol, do 12P/Pons-Brooks, a observação é bem desfavorável para observadores no hemisfério sul.
A notícia boa é que ao atingir o periélio o 12P já estará numa posição menos desfavorável para observação abaixo do equador. Após o periélio o cometa segue em direção ao hemisfério sul celeste, permitindo que sejamos os últimos a observá-lo enquanto se afasta do Sol.
E vamos poder vê-lo a olho nu?
Certamente vai ser possível vê-lo com binóculos. A projeção de magnitude 4 ao redor do periélio coloca seu brilho bem dentro dos limites do que podemos observar a olho nu, mas cometas são objetos de brilho difuso e o 12P aparecerá próximo ao horizonte logo após o pôr do Sol nas semanas que antecedem e sucedem o periélio. O céu ainda não completamente escuro e a pequena elevação do cometa sobre o horizonte adicionam uma dificuldade extra à observação. É possível sim vê-lo a olho nu, mas busque locais com horizonte desobstruído e acompanhe nossas redes sociais para dicas de observação assim que o cometa estiver mais evidentes em nossas latitudes.
Os Planetas.
Aproveite para observar o Júpiter ao anoitecer. Abril é o mês da despedida do Gigante Gasoso do céu noturno. E pelos próximos meses teremos os planetas mais brilhantes visíveis apenas durante a madrugada. Então prepare-se para cair cedo da cama se quiser acompanhar as sempre belas conjunções entre a Lua e os planetas.
No diagrama abaixo vemos a evolução dos planetas e do cometa Pons-Brooks no céu durante o mês de abril. Clique na imagem para ampliar.
Conjunções
Ao amanhecer do dia 6 de abril, a Lua com 8% de sua face visível iluminada vai compor um belo quadro ao lado de Saturno e Marte. Mais baixo no horizonte, Vênus completa a composição. É uma bela oportunidade para emoldurar três planetas e a Lua incluindo a paisagem.
Ao amanhecer do dia 6 de abril, a Lua, com 8% de sua face visível iluminada ao lado de Saturno. [imagem: gráfico gerado no Stellarium. Wandeclayt M.]
Na madrugada de 10 de abril uma oportunidade rara de ver dois planetas através da ócular do telescópio. Se você é capaz de ver a lua inteira na ocular, poderá ver simultaneamente Marte e Saturno no mesmo campo. Na imagem abaixo simulamos no Stellarium a visão com um telescópio de 200 mm de abertura, f/6 com ocular de 26mm.
Marte e Saturno pela ocular do telescópio. Simulação no software Stellarium [ Wandeclayt M./Céu Profundo]
No dia 29 de abril o encontro é entre Marte e Netuno, com os planetas ainda mais próximos no campo da ocular. É uma boa oportunidade de identificar Netuno no céu.
Marte e Netuno no campo da ocular, em 29 de abril. Simulação no software Stellarium. [Wandeclayt M./Céu Profundo]
Júpiter e Urano também se cruzam no dia 20 de abril, mas com os planetas muito próximos do horizonte ao pôr do Sol.
Satélites de Júpiter
Configuração dos satélites galileanos de Júpiter durante o mês de abril. O diâmetro de Júpiter é representado pela faixa central. As curvas representam a posição aparente dos satélites em relação ao disco do planeta. Gráfico gerado em https://pds-rings.seti.org/tools/tracker3_jup.shtml
Na dança dos planetas, Júpiter reina soberano e solitário nas noites de março enquanto Saturno, após a conjunção em 28 de fevereiro, se junta a Vênus e Marte nas madrugadas.
Março também é o mês do equinócio vernal, marcando o início do outono no hemisfério sul e da primavera no hemisfério norte. O outono inicia às 00:06 (Horário de Brasília) do dia 20 de março. Nos equinócios, a noite e o dia claro tem a mesma duração e ambos os hemisférios estão igualmente iluminados. Os equinócios de outono e da primavera, são também os únicos dias do ano em que o Sol nasce e se põe exatamente nos pontos cardeais leste e oeste, respectivamente. E um experimento interessante a ser feito é marcar exatamente os pontos do nascente e do poente nesses dias, para comparar com o nascente e o poente nos dias seguintes até os limites dos solstícios de inverno e de verão, quando o Sol atinge posições extremas ao norte e ao sul.
Ao anoitecer, a constelação de Órion está alta no céu, tornando a Grande Nebulosa de Órion (M42) um alvo ideal para pequenos telescópios, mesmo em regiões com alguma poluição luminosa. Os aglomerados estelares Plêiades e Híades, em Touro seguem também visíveis até o fim do mês, nas primeiras horas da noite.
Céu de São José dos Campos, às 20h do dia 15 de março de 2024. O Norte está no topo e o Leste à esquerda. [diagrama: @ceuprofundo, gerado no Stellarium]
A constelação do Escorpião, que nasce por volta da meia-noite no início de março, é o palco de uma bela ocultação, visível de grande parte do Brasil na madrugada do domingo 03: A Lua ocultará Antares, o coração do Escorpião, em um evento que privilegiará observadores em cidades nas regiões Norte e Centro-Oeste. Veja detalhes mais abaixo.
As efemérides foram computadas usando as bibliotecas astropy e astroquery em scripts Python e o software Occult v4. Boas observações!
Data Evento
2024-03-03 5h - Antares 0.4° S da Lua (ocultação visível do Brasil)
2024-03-03 12h - Lua minguante
2024-03-04 22h - Lua mais ao sul (-28.5°)
2024-03-06 23h - Plutão 2.1° N da Lua
2024-03-08 3h - Marte 3.2° N da Lua
2024-03-08 12h - Mercúrio 0.4° N de Netuno
2024-03-08 15h - Vênus 3.0° N da Lua
2024-03-09 15h - Saturno 1.3° N da Lua
2024-03-10 4h - Lua no Perigeu (356893.64 km)
2024-03-10 5h - Lua nova
2024-03-10 16h - Netuno 0.4° N da Lua
2024-03-11 00h - Mercúrio 0.9° N da Lua
2024-03-13 20h - Júpiter 3.3° S da Lua
2024-03-14 7h - Urano 3.2° S da Lua
2024-03-17 1h - Lua crescente
2024-03-17 9h - Netuno em conjunção.
2024-03-17 11h - Lua mais ao norte (28.5°)
2024-03-19 3h - Pollux 1.5° N da Lua
2024-03-20 00h - Equinócio de Outono (Hemisfério Sul)
2024-03-21 20h - Vênus 0.3° N de Saturno
2024-03-22 5h - Regulus 3.3° S da Lua
2024-03-23 12h - Lua no Apogeu (406306.97 km)
2024-03-24 17h - Mercúrio em máxima elongação leste(19°)
2024-03-25 3h - Lua cheia (Eclipse)
2024-03-26 18h - Spica 1.3° S da Lua
2024-03-30 12h - Antares 0.3° S da
MARÇO NA HISTÓRIA
--------------------------------------------------
MARÇO
07 - (1792) Nascimento de John Herschel, astrônomo que originou o uso do sistema juliano na astronomia. Ele nomeou sete luas de Saturno e quatro luas de Urano.
09 - (1934) Nascimento de Yuri Gagarin (URSS), primeiro humano a viajar ao espaço.
11 - (1811) Nascimento de Urbain Le Verrier, astrônomo responsável pela previsão da localização de um oitavo planeta solar, agora chamado Netuno.
13 - (1781) Descoberta de Urano pelo astrônomo William Herschel.
13 - (1855) Nascimento de Percival Lowell, iniciou as pesquisas que levaram à descoberta do planeta Plutão.
16 - (1750) Nascimento de Caroline Herschel, astrônoma, primeira mulher a receber pagamentos para realizar pesquisas astronômicas.
18 - (1965) Alexei Leonov (URSS) se torna o primeiro ser humano a realizar um caminhada espacial (Atividade Extraveicular)
19 - (2023) Lançamento do foguete HANBIT-TLV da empresa coreana INNOSPACE a partir do Centro de Lançamento de Alcântara (CLA).
27 - (1969) Lançamento da sonda Mariner 7, para Marte.
2024-03-03 Ocultação de Antares pela Lua
Ocultação de Antares pela Lua na madrugada de 2024-03-03 [mapa: Carolina da Silveira, gerado no Occult4]
O mapa acima mostra a região de visibilidade da ocultação da estrela Antares (alfa do Escorpião) na madrugada do dia 3 de março. Na região compreendida entre as linhas brancas, o evento acontece com céu escuro. Entre as linhas azuis, evento acontece no crepúsculo matutino e amanhecer. Entre as linhas vermelhas tracejadas o evento acontece com céu claro. Nas regiões vizinha a área de visibilidade da ocultação, a conjunção entre Lua e Antares também é um espetáculo digno de ser observado! Então, de qualquer lugar do Brasil, não perca a oportunidade de registrar este evento antes do nascer do Sol.
Satélites de Júpiter
Configuração dos satélites galileanos de Júpiter durante o mês de março. O diâmetro de Júpiter é representado pela faixa central. As curvas representam a posição aparente dos satélites em relação ao disco do planeta.
Assim como o Mickey Mouse da animação de 1928 que acaba de entrar em domínio público, catálogos astronômicos podem ser usados livremente sem que você precise pagar por eles.
Há várias maneiras de se identificar uma mesma estrela no céu. Algumas estrelas possuem nomes próprios, como Sírius, a estrela mais brilhante na constelação do Cão Maior. Ou como Betelgeuse e Rigel em Órion. Ou ainda Antares, a gigante vermelha que marca o coração da constelação do Escorpião.
Muitos desses nomes tem origem na Grécia antiga e trilharam um longo caminho até os nossos dias através de obras como o Almajesto, escrito no séc. II por Claudio Ptolomeu, que resgatava o trabalho de Hiparco (190 a.C – 120 a.C) que elaborou o primeiro catálogo estelar e introduziu o conceito de “grandezas” para quantificar o brilho das estrelas, atribuindo seis grandezas às estrelas então visíveis a olho nu, indo da primeira grandeza para as mais brilhantes até a sexta grandeza para as estrelas no limite da visibilidade. Esta classificação em grandezas foi preservada no sistema moderno de magnitudes de objetos astronômicos.
A ponte entre Claudio Ptolomeu e o Renascimento europeu coube principalmente a astrônomos árabes, que deixaram um rico legado de nomenclatura estelar, seja por nomes cunhados originalmente pelos povos do deserto ou por transcrições de nomes gregos. O Livros das Estrelas Fixas (964 d.C) do astrônomo persa Abd al-Rahman al-Sufi, descreve as 48 constelações listadas por Ptolomeu e inclui tabelas com a localização e magnitude das estrelas e listas com seus nomes árabes. Al Sufi é uma das grandes fontes de nomes estelares que se perpetuaram e foi uma grande influência para a Astronomia europeia.
A constelação de Escorpião representada no Livro das Estrelas Fixas, de Al Sufi.
Nomes latinos como Spica (a Espiga) em Virgem, ou Bellatrix (a Guerreira) em Órion misturam-se a nomes de origem árabe que você certamente conhece: Betelgeuse (que vem de Ibt al Jauzah, A axila do que está no meio) em Órion, Aldebaran ( Al Dabaran, Aquela que segue. No caso, segue as Plêiades) em Touro e Denébola (Al Dhanab al Asad, a cauda do Leão) em Leão.
Mas nem todas as estrelas visíveis possuem nomes próprios. Johann Bayer (1572-1625) publicou em 1603 seu atlas estelar Uranometria (Uranometria Omnium Asterismorum) introduzindo um novo sistema de nomenclatura: a partir da estrela mais brilhante da constelação, atribuem-se em ordem alfabética as letras do alfabeto grego, seguido do genitivo em latim da constelação. Assim, estrela mais brilhante na constelação do Touro (Aldebaran) é a alfa Tauri, a segunda mais brilhante é a beta Tauri e assim sucessivamente. Após a última letra do alfabeto grego (ômega), Bayer utilizou as letras do alfabeto latino.
O Uranometria de Bayer certamente simplificou a maneira como identificamos estrelas, mas ainda assim, é insuficiente quando mergulhamos em direção a estrelas menos luminosas. A sequência necessária ao trabalho de Bayer veio com o catálogo criado por John Flamsteed (1646-1719) que ordenava as estrelas não pelo seu brilho aparente mas por suas coordenadas, listando-as em ordem crescente de ascenção reta em seu Stellarum Inerrantium Catalogus Britannicus (Catálogo Britânico das Estrelas Fixas) incluído no volume 3 do Historiae coelestis Britannicae, publicado postumamente em 1725.
A esta altura, já temos três maneiras de identificar as estrelas mais brilhantes: por seu nome próprio e pelas designações de Bayer e de Flamsteed. Assim, a estrela número 58 na constelação de Órion (58 Orionis) do catálogo de Flamsteed é também a alfa Orionis na designação de Bayer, além de ter seu nome próprio: Betelgeuse.
Região das Constelações de Órion e Touro no Atlas de Flamsteed. Constelações que não se popularizam como “O pequeno telescópio de Herschel” e “A Harpa de George” aparecem representadas nessa edição francesa do Atlas de 1776 [Acervo online da Universiteit Utrecht].
Das 2936 estrelas listadas na versão final do catálogo de Flamsteed, no séc 18, até os catálogos contemporâneos o salto no número de objetos catalogados não foi nada singelo. No séc. 19, o atlas Uranographia (1801) de Johann Elert Bode (1747-1826) incluía novas estrelas do hemisfério sul celeste e representava novas constelações imaginadas por Hevelius e Lacalle, chegando a 17240 objetos. O Uranometria Argentina(1879), de Benjamin Gould, elevava o número de objetos a 32448.
No séc. 20, novos grandes catálogos surgiram, como os populares Henry Draper Catalog (HD), Bright Star Catalog (Harvard Revised Photometry, HR) e Smithsonian Astrophysical Observatory Catalog (SAO), todos usando designações alfanuméricas. Usando esses catálogos, Betelgeuse pode ser chamada de HD39801, HR 2061 ou SAO 113271.
Consultando dados do catálogo Gaia DR1 em uma região do aglomerado globular de estrelas M4, imageado pelo Telescópio Espacial Hubble. Tanto as imagens do Hubble quanto os dados do Gaia são públicos e amplamente utilizados por cientistas profissionais e cidadãos.
Saltando para a atualidade, na era dos mapeamentos realizados por satélites, chegamos catálogos 1 milhão de vezes maiores que o de Bayer. Em sua versão publicada em 2022, o catálogo gerado pelo satélite Gaia, da Agência Espacial Europeia (ESA), lista 1,5 bilhão de fontes com magnitude, posição, paralaxe e movimento próprio.
O valor de um catálogo mora na sua utilidade e na ampla adoção pela comunidade. Ao listar um objeto em uma publicação científica é preciso que aquele objeto seja inequivocamente identificado por qualquer pessoa interessada, cientista profissional ou não, independente de sua nacionalidade ou cultura. E isto é possível graças ao uso de catálogos que são de conhecimento de toda a comunidade de observação e pesquisa em astronomia, incluindo a observação amadora. Se recebemos uma previsão de que a estrela HD39801 será ocultada por um asteroide, prontamente sabemos suas coordenadas e magnitude e podemos identificar que a estrela é a nossa familiar Betelgeuse.
Isso significa que um catálogo particular, sem qualquer uso pela comunidade não tem valor? A resposta curta é sim. Mas há quem consiga lucrar com isso, aproveitando-se da ingenuidade do público menos familiarizado com o tema. Há quem cobre para batizar uma estrela com seu nome, oferecendo vistosos certificados de inclusão num catálogo que será utilizado por um total de zero pessoas. Aparentemente o encontro entre oportunismo e ingenuidade é o motor desse mercado. Falamos com tranquilidade: vender estrelas é golpe.
O fato é que a compra do nome de uma estrela não tem qualquer respaldo da entidade mundial de regulação da nomenclatura astronômica, a União Astronômica Internacional (IAU) e mais ninguém além de você e de quem ganhou o seu dinheiro vai fazer a mínima ideia de que você deu seu nome ao distante astro.
Catálogos oficiais, utilizados pela comunidade astronômica, não comercializam nomes de estrelas ou de outros objetos astronômicos. Fuja desse golpe.
E como a IAU não comercializa nomes de objetos astronômicos, talvez faça mais sentido adotar livre e gratuitamente a estrela de sua preferência e quem sabe até presentear seus entes queridos com sua estrela favorita sem precisar pagar para qualquer empresa charlatã. E se você não possui um telescópio, pode explorar o céu e escolher sua estrela, ou talvez uma nebulosa ou uma galáxia inteira, em um atlas celeste fotográfico como o ESASky. Provavelmente você não vai poder mandar entregar esse presente, mas não temos dúvidas de que dedicar a alguém um belo objeto astronômico que você pacientemente encontrou após explorar uma região do céu é um presente único e tocante. Mas o mais importante é: não compre! Adote!
Você certamente conhece a constelação do Cruzeiro do Sul e possivelmente consegue reconhecê-la com facilidade no céu noturno, não? Bem, talvez em um céu realmente escuro, longe da poluição luminosa das áreas urbanas, como na imagem abaixo, haja tantas estrelas visíveis que a tarefa de identificar o Cruzeiro do Sul seja um pouco mais desafiadora. Mas vamos dar uma ajudinha. Marcamos aí as 5 estrelas mais brilhantes que formam o asterismo do Cruzeiro!
E usamos a palavra “asterismo” porque a constelação do Cruzeiro do Sul, ou Crux, não se resume a essas 5 estrelas. O conceito moderno de constelação, adotado pela União Astronômica Internacional (IAU), orgão responsável pela nomenclatura oficial usada pela astronomia profissional, não é a de um “grupo de estrelas”.
A constelação na verdade é uma área do céu, com bordas bem definidas de acordo com suas coordenadas celestes. E o que a IAU define como a constelação do Cruzeiro é toda a região em verde na imagem abaixo.
Carta Celeste da Região do Cruzeiro do Sul e adjacências, criada no software Sky Charts [créditos: Wandeclayt M./@ceuprofundo]
Assim, todas as estrelas, nebulosas, aglomerados estelares ou outros objetos astronômicos vistos na região demarcada, estão na constelação do Cruzeiro.
E essas estrelas estão próximas umas das outras?
Esse é outro aspecto que precisamos discutir! As estrelas de uma constelação, não estão necessariamente próximas umas das outras. Estão apenas na mesma direção aproximada no céu, mas podem apresentar distâncias variadas entre elas.
Mas para criar um mapa tridimensional do céu, conhecendo não apenas a direção das estrelas na esfera celeste mas também suas distâncias, foi preciso esperar dois milênios.
Medindo distâncias.
A área da Astronomia que se ocupa de medir as posições dos objetos celestes se chama Astrometria e surgiu muito antes dos telescópios passarem a ser empregados para a observação do céu no século 17.
Hiparco, na Grécia do século 2 a.C, já mapeava as estrelas e o Almagesto, a grande compilação astronômica de Claudio Ptolomeu no Egito do século 2 d.C, trazia os mapas das constelações catalogadas por Hiparco e a classificação das estrelas por seu brilho (as medidas de brilho são outra atividade observacional importante: a Fotometria).
No século 16, Tycho Brahe foi um criterioso observador da era pré telescópica e suas precisas observações astrométricas do planeta Marte foram a base para que seu discípulo Johannes Kepler enunciasse as leis empíricas do movimento planetário. Empíricas porque ainda não havia uma teoria gravitacional que explicasse a natureza do movimento orbital e a geometria das órbitas descrita por Kepler era totalmente baseada nos dados observacionais.
Mas medir distâncias estava longe do que Tycho conseguiria fazer no século 16 e completamente fora do alcance do que Hiparco poderia sonhar em fazer no século 2 a.C.
O método geométrico usado hoje para medir indiretamente as distâncias estelares é conceitualmente simples e está representado no diagrama da figura abaixo. Observamos uma estrela a partir de uma posição da órbita terrestre e registramos sua posição. Seis meses depois, a Terra estará numa posição diametralmente oposta em sua órbita e, portanto, a aproximadamente 300 milhões de quilômetros distante da posição anterior. Fazemos uma nova observação e registramos o deslocamento aparente sofrido pela estrela, devido à mudança do ponto de vista de nossa observação. Chamamos esse deslocamento aparente de “paralaxe” e ele vai variar com a distância da estrela. Estrelas mais próximas apresentarão uma paralaxe maior. Estrelas mais distantes, uma paralaxe menor.
Você pode testar esse método olhando para seu dedo indicador com o braço esticado alternadamente com cada um dos olhos. Você vai perceber que o dedo vai parecer se deslocar a medida que você troca de olho ao observá-lo. Aproxime o dedo um pouco mais do rosto. O deslocamento vai parecer maior.
Mas se o método é assim tão simples, por que Hiparco e Tycho não poderiam medir a distância até as estrelas mais próximas? Aí aparecem dois problemas! O primeiro deles é que a distância até as estrelas é muito maior do que qualquer pensador da antiguidade, ou mesmo do Renascimento, se arriscou a estimar e a paralaxe estelar é muito pequena. E o segundo é que imperava o modelo geocêntrico do Universo, que acabava sendo reforçado pela falha na detecção da paralaxe estelar, afinal, se não há paralaxe, a Terra deveria ser imóvel!
A largada da corrida para medir a paralaxe estelar só é dada com o triunfo do heliocentrismo e com a compreensão do movimento orbital da Terra, graças inicialmente a Kepler e Newton. A partir do momento que tínhamos certeza que a Terra orbitava o Sol, necessariamente deveria haver alguma paralaxe a ser medida, ainda que muito pequena.
Mas quanto é uma paralaxe “muito pequena“?
Vamos introduzir mais alguns conceitos para deixar isso mais claro. Na Astrometria usamos medidas angulares para falar da posição ou da separação entre objetos na esfera celeste ou do diâmetro aparente de alguns corpos.
Um círculo é tradicionalmente dividido em 360 partes iguais chamadas de graus (°). A separação entre o horizonte e o zênite (o ponto no céu que fica acima da sua cabeça) é de 1/4 de círculo ou de 90º. O Sol e a Lua representam no céu um diâmetro de 0,5°.
Essa divisão do círculo em 360 graus é uma herança da Babilônia e remonta a mais de 2000 anos antes de Cristo. Nesse sistema, cada grau é dividido em 60 partes chamadas “minutos de arco” (ou 60′) e cada minuto de arco é dividido em 60 segundos de arco (ou 60″). Ou seja, 1º equivale a 3600″.
Há inclusive uma unidade de distância definida a partir da paralaxe, o parsec. Um parsec é a distância na qual um objeto exibe uma paralaxe de 1 segundo de arco, e equivale a 3,26 anos luz.
E aí está o grande desafio! Como nenhuma estrela, além do Sol, está localizada a menos de um parsec, a paralaxe a ser medida é menor que 1 segundo de arco, ou mais que 3600 vezes menor do que 1°.
Michael Perryman em the History of Astrometry aponta que as melhores observações de Tycho alcançaram uma resolução de 20 segundos de arco, bem longe da resolução necessária para medir a paralaxe estelar.
No século 18, William Herschel e sua irmã Caroline realizaram grandes descobertas com telescópios de dimensões nada modestas (mais de 1 m de diâmetro e 12 metros de distância focal). Entre as contribuições dos irmãos Herschel para a Astronomia estão a descoberta de Urano e duas de suas luas, de duas luas de Saturno e a detecção do movimento orbital em estrelas binárias. Mas eles falharam na detecção da paralaxe estelar. Não por limitações instrumentais, mas por não terem selecionado estrelas próximas o suficiente para exibir uma paralaxe mensurável.
Uma melhor seleção de estrelas candidatas a exibir uma maior paralaxe (e portanto estarem mais próximas) surge a partir de critérios sugeridos pelo astrônomo Wilhelm Struve na primeira metade do século 19: estrelas brilhantes, com grande movimento próprio (além do efeito da paralaxe, as estrelas estão realmente se movendo no céu e um movimento próprio mais rápido pode significar que a estrela está mais próxima de nós) e, no caso de estrelas binárias, estrelas que estejam bem separadas, a julgar por seu movimento orbital.[1]
Foi na década de 1830 que as primeiras medidas confiáveis de paralaxe foram finalmente publicadas. Struve anunciou uma paralaxe de 1/8 de segundo de arco para Vega (a alfa de Lira) e Friedrich Bessel encontrou uma paralaxe de 0,314 segundos de arco para a estrela 61 Cygni. Trabalhos seguidos pela determinação da paralaxe de Alfa Centauri, por Thomas Henderson em 1839.
Embora Alfa Centauri faça parte do sistema estelar mais próximo do Sistema Solar, ela está fora do alcance de observadores nas latitudes da Europa (consequências de uma Terra esférica) e foi observada por Henderson em uma campanha no Cabo da Boa Esperança.
E parou por aí?
A Astrometria seguiu muito bem, obrigado, e mapas cobrindo ambos os hemisférios celestes foram produzidos incorporando dados cada vez mais precisos de coordenadas celestes, movimento próprio e distância, até que a própria atmosfera terrestre tornou-se o principal limitante para o que poderia ser medido com telescópios instalados na superfície.
O novo salto de qualidade vem com a proposta apresentada em 1967 pelo francês Pierre Lacroute[2]: um telescópio dedicado a astrometria e fotometria em órbita da Terra, acima da atmosfera, onde poderia catalogar estrelas muito menos brilhantes e atingir precisão sem precedentes nas medidas astrométricas e cobrindo inteiramente ambos os hemisférios celestes (outra restrição encontrada pelos telescópios na superfície é a impossibilidade de observar todo o céu).
HIPPARCOS foi o primeiro satélite dedicado a astrometria. Lançado pela ESA em 1989, inaugurou uma era de alta precisão nos catálogos estelares [imagem: Agência Espacial Europeia].
A ideia culminou no lançamento do satélite Hipparcos (HIgh Precision PARallax COllecting Satellite), pela Agência Espacial Europeia (ESA) em 1989. O satélite coletou dados até 1993, dando origem ao catálogo Hipparcos, com quase 120 mil estrelas. Seus dados geraram ainda os catálogos Tycho e Tycho 2, extrapolando a marca de 2,5 milhões de estrelas catalogadas.
2,5 milhões de estrelas parece muito? E é! Mas o lançamentoo em 2013, também pela ESA, de um novo satélite astrométrico, o Gaia, multiplicou por 1000 esse número, ultrapassando 1,8 bilhão de fontes catalogadas na terceira liberação de dados da missão (Gaia data Release 3).
E como eu posso saber a distância até as estrelas do Cruzeiro?
[Vamos fazer umas continhas aqui e está tudo bem se você pular essa seção, mas garantimos que o resultado é divertido e vai valer a pena se você tentar nos acompanhar aqui.]
Os catálogos Hipparcos, Tycho, Tycho 2 e Gaia são públicos. Isso significa que qualquer pessoa pode ter acesso a todos os parâmetros de astrometria e fotometria medidos pelos satélites. É possível acessá-los usando ferramentas especializadas em operações com dados astronômicos como o TOPCAT ou através de recursos disponíveis em ferramentas de visualização de imagens e dados como o SAO Image DS9. O acesso também pode ser feito através de bibliotecas em Python ou diretamente em bases de dados como o SIMBAD.
E se você quer descobrir as distâncias até as 5 estrelas mais brilhantes do Cruzeiro (ou a qualquer estrela catalogada) é só consultar a paralaxe dessas estrelas na pesquisa básica do SIMBAD. Conhecendo a paralaxe a relação é direta:
distância (em parsecs) = 1000 * (1 / paralaxe (em milissegundos de arco)).
A multiplicação por 1000 é necessária por que a paralaxe é dada nos catálogos em “milissegundo de arco”. Se você quiser a distância em anos luz, a conversão também é imediata:
distância (em anos-luz) = 3,26 * distância (em parsecs).
Agora que você já sabe o que fazer com os dados, pode colocar a mão na massa.
Acesse a busca básica do SIMBAD (figura abaixo) e pesquise as cinco estrelas mais brilhantes da constelação do Cruzeiro do Sul: “alf cru”, “bet cru”, “gam cru”, “del cru” e “eps cru”.
Tela de pesquisa básica do SIMBAD: http://simbad.cds.unistra.fr/simbad/sim-fbasic. Insira o nome do objeto a ser pesquisado (no caso, “alfa crux”, “alf cru” ou “alp cru” correspondem a mesma estrela, a alfa do Cruzeiro do Sul).
Na janela de resultados, use o valor no campo “Parallaxes (mas)” para calcular as distâncias pelas relações que apresentamos acima. Se tudo der certo, você vai encontrar os mesmos valores apresentados na próxima seção.
Tela de resultados da busca básica do SIMBAD. Use o valor da paralaxe no campo indicado pela seta para computar a distância até a estrela consultada.
O Cruzeiro do Sul em três dimensões.
Consultando bases públicas de dados astronômicos como o SIMBAD, podemos encontrar as distâncias para qualquer estrela catalogada. E para alguns grupos de estrelas os resultados podem ser surpreendentes. Por exemplo, você imaginava que Rubídea (gama Crux) apesar de ser apenas a terceira estrela mais brilhante na constelação do cruzeiro é a que está mais próxima de nós, a apenas 88 anos-luz? Na verdade ela está mais próxima do Sol do que de qualquer uma das outras estrelas que formam a Cruz, já que a estrela seguinte, epsilon Crux, a Intrometida, está a quase 230 anos-luz de nós.
Estrela
Paralaxe (milissegundos de arco)
Distância (anos-luz)
alp Crux (Acrux)
10.13
322.01
beta Crux (Mimosa)
11.71
278.57
gama Crux (Rubídea)
36.83
88.57
delta Crux (Pálida)
7.1681
455.07
epsilon Crux (Intrometida)
14.1999
229.72
Dados de paralaxe e distância das estrelas mais brilhantes do Cruzeiro do Sul. Distâncias calculadas a partir dos dados de paralaxe acessados via SIMBAD.
Combinando os dados astrométricos do catálogo em uma visualização tridimensional, podemos evidenciar as diferenças de distância entre as estrelas que formam o asterismo da cruz na constelação.
Precisamos concordar que foi uma jornada e tanto! Há 200 anos era instrumentalmente impossível determinar a distância até as estrelas. Hoje, temos telescópios espaciais com capacidade de mapear bilhões de fontes em nossa galáxia ou até em galáxias vizinhas. E o melhor de tudo isso: todos esses dados estão a um clique de distância de você.
Para Pensar um Pouco.
Usando o método que apresentamos no texto, determine a distância até alfa Centauri.
Alfa Centauri é na verdade um sistema triplo e você pode pesquisar cada uma de suas componentes individualmente: “alf Cen A”, “alf Cen B” e “alf Cen C”. Pesquise no SIMBAD e identifique qual das componentes está mais próxima de nós.
O SIMBAD informa também o brilho das estrelas. Observa no campo “Fluxes” a linha iniciada por “V”. Essa é a magnitude visual do objeto. Quanto maior a magnitude, menor o brilho. Essa escala é também uma herança de Hiparco e Ptolomeu, que apresentaram as estrelas divididas em seis grandezas, ou magnitudes. As estrelas de primeira grandeza eram as mais brilhantes e as de sexta grandeza as menos brilhantes visíveis a olho nu. O sistema moderno de magnitudes é uma adaptação dessa escala. A diferença de 1 magnitude significa uma diferença de fluxo (brilho) de 2,5 vezes. Assim, uma estrela de magnitude 0 é 2,5 vezes mais brilhante que uma estrela com magnitude 1. Uma diferença de 5 magnitudes significa uma diferença de 100 vezes no fluxo (brilho). O limite de magnitude para a observação a olho nu é 6. Consulte a magnitude da estrela mais próxima do sistema alfa Cen no SIMBAD. Ela é visível a olho nu?
Ao abrir o notebook, crie uma nova cópia do arquivo para que seja possível editá-la (figura abaixo). Não é necessário instalar nenhum componente localmente e toda a execução ocorre nos servidores da plataforma Google Colab. O código é bem comentado e você não precisa entender de programação para usar o script. Não requer prática nem tampouco habilidade. Qualquer criança brinca e se diverte.
Após criar uma cópia, o código será inteiramente editável e você poderá experimentar utilizar outras estrelas para consulta ou mudar os parâmetros usados na construção da animação. Para executar o script, clique no ícone indicado pela seta (imagem abaixo) em cada bloco de código.
Os resultados são exibidos na mesma janela do código e cada bloco e executado em segundos.
O Sol observado no ultravioleta extremo, no canal de 193 Angstroms do instrumento AIA do telescópio SDO entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/AIA].
Dizer que um “buraco” surgiu no Sol, como vimos em muitos posts, ou mesmo chamar de “cratera” como vimos em uma matéria do jornal o Globo reproduzida no G1 pode gerar um pouco de confusão em quem lê (Ganhando o selo “Céu Profundo – Não é bem Assim!”).
Não é bem assim!
O Sol não tem uma superfície sólida como a Terra ou Lua. E portanto não se formam crateras no Sol. O que costumamos considerar como sua superfície é a camada que chamamos de ‘fotosfera’. A fotosfera é relativamente fria (menos de 6000 graus C) se a compararmos com seu núcleo, que atinge 15 milhões de graus. Não tivemos nenhum buraco na fotosfera do Sol. O que vimos nas imagens foi uma falha nas camadas exteriores do Sol, a Coroa (ou Corona), que é uma região pouco densa mas muito quente (excedendo 1 milhão de graus) e que se eleva bem acima da fotosfera.
Não é bem assim: O Globo publicou uma boa matéria sobre o buraco coronal, mas usar o termo “cratera’ no título causa confusão (ninguém chama o buraco na camada de ozônio da Terra de cratera!). [imagem: reprodução/O Globo/NASA/SDO/AIA]
Nas últimas imagens capturadas pelo observatório espacial SDO, da NASA, a coroa aparece mais calma, mas é possível ver buracos coronais nas imagens em 193Å (esse é o comprimento de onda da luz registrada na imagem e fica na faixa do ultravioleta extremo) e muitas manchas na fotosfera nas imagens do instrumento HMI.
As câmeras do SDO registram imagens em preto e branco, mas para cada filtro utilizado as imagens recebem cores distintas.
Manchas solares. Regiões mais frias na fotosfera do Sol entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/HMI]
O SDO é um dos telescópios que monitora constantemente o Sol e nos ajuda a prever a chegada de partículas carregadas eletricamente ocasionalmente ejetadas pelo Sol em nossa direção. Essas partículas interagem com a atmosfera e com o campo magnético terrestre, podendo provocar interferência nas comunicações, no funcionamento de satélites e até em redes de transmissão de energia, sobretudo em altas latitudes, mais próximas dos polos magnéticos da Terra. Mas não são motivo para preocupação generalizada.
O Sol, visto no canal de 171Å do instrumento AIA do telescópio SDO. [NASA/SDO/AIA]O Sol, visto no canal de 304Å do instrumento AIA do telescópio SDO.
Dezembro dá as boas vindas ao verão! É a estação dominada por Órion, com seu cintilante cinturão! O cinturão de Órion – também conhecido como as Três Marias – são um asterismo facilmente reconhecível nas noites de dezembro. Visível de todo o Brasil, a constelação abriga um dos mais brilhantes objetos de céu profundo: M42, a Grande Nebulosa de Órion! É tempo de tentar identificá-la a olho nu e de apontar os telescópios para essa vasta região de formação estelar! Um efervescente berçário de estrelas ao alcance de qualquer pequeno telescópio.
A constelação de Órion reina no céu de verão. [imagem: Wandeclayt M./@ceuprofundo]Uma visão levemente desfocada da constelação de Órion realça as cores das estrelas mais brilhantes da constelação e da magnífica nebulosa M42.
Órion é também uma constelação rica em cores! Na imagem acima, levemente desfocada, toda a gama de matizes da constelação fica evidenciada! As estrelas Alnitak, Alnilam e Mintaka, que formam o cinturão de Órion (as Três Marias) são azuladas. Betelgeuse exibe um laranja intenso. Rigel tem um brilho intenso mas pálido. E a nebulosa de Órion resplandece com o vermelho do hidrogênio muito quente que predomina em sua composição.
A norte de Órion outras joias brilham na constelação do Touro! O aglomerado aberto M45 – As Plêiades – também é um objeto famoso com diversos nomes populares: sete irmãs, “sete estrelo”, crucifixo. Na imagem abaixo as Plêiades aparecem em excelente companhia: em conjunção com Vênus em 23 de abril de 2023.
Vênus em conjunção com as Plêiades em 23 de abril de 2023.
Sistema Solar.
Vocês devem imaginar o quanto é trabalhoso compilar os eventos astronômicos do mês para criar uma publicação como esta. Fases da Lua, conjunções entre a Lua e estrelas e planetas, atividade de chuvas de meteoros e outros eventos. E some a isso a escassez de mão de obra aqui no Céu Profundo: todo o trabalho é feito de forma voluntária e não remunerada. É esse tipo de situação que motiva alguém a gastar alguma energia buscando formas de automatizar e simplificar tarefas. Foi assim que decidimos fazer um hiato nas publicações das efemérides mensais até que tivéssemos um script em linguagem Python capaz de gerar a maior parte desses dados de maneira automática. E aqui estamos nós! Publicando nosso primeiro post mensal com efemérides geradas utilizando a biblioteca AstroPy.
Além dos dados fornecidos automaticamente pelo script, acrescentamos a configuração dos satélites de Júpiter para todo o mês e o aspecto dos anéis de Saturno, obtidos usando as ferramentas do Planetary Data System e o picos das chuvas de meteoro ativas listadas no calendário da International Meteor Organization (IMO).
Calendário Astronômico - Dezembro/2023
Horários BRT (UTC-3)
2023-12-04 11:00:00 - Mercúrio em máxima elongação: 23.00º leste.
2023-12-04 15:41:00 - Lua no Apogeu (404306.55 km).
2023-12-05 02:50:00 - Lua Minguante.
2023-12-09 11:00:00 - Lua a 3.3º de Vênus.
2023-12-12 07:00:00 - Lua a 3.5º de Marte.
2023-12-12 21:07:00 - Lua Nova.
2023-12-13 a 14 - Pico de atividade da chuva de meteoros Geminídeos.
2023-12-14 02:00:00 - Lua a 4.4º de Mercúrio.
2023-12-16 15:46:00 - Lua no Perigeu (367929.81 km).
2023-12-17 21:00:00 - Lua a 2.3º de Saturno.
2023-12-19 15:40:00 - Lua Crescente.
2023-12-22 08:13:00 - Solstício de Verão (Hemisfério Sul).
2023-12-22 10:00:00 - Lua a 2.4º de Júpiter.
2023-12-22 13:00:00 - Mercúrio em conjunção inferior.
2023-12-26 21:13:00 - Lua Cheia.
2024-01-03 00:39:00 - Terra no Periélio (147100624.62 km).
2024-01-12 12:00:00 - Mercúrio em máxima elongação: 25.34º oeste.
Os Planetas – Dezembro/2023
Vênus segue visível nas madrugadas e Mercúrio após uma máxima elongação a leste em 4 de dezembro mergulha em direção ao Sol e emerge a oeste, atingindo máxima elongação em 12 de janeiro. Saturno e Júpiter são visíveis durante todo o mês. A imagem abaixo mostra o deslocamento aparente do Sol e dos planetas no céu durante o mês de dezembro (clique na imagem para ampliar).
Movimento aparente dos planetas no céu em dezembro de 2023.
A linha tracejada azul representa a Eclíptica. A trajetória de cada planeta é indicada por uma linha contínua. A seta indica a direção do movimento dos planetas e está posicionada nas coordenadas do planeta na noite de 31/dez. Gráfico gerado utilizando as bibliotecas Matplotlib e Astropy. [Wandeclayt M./Ceu Profundo]
Satélites de Júpiter
Use o diagrama abaixo para identificar ao telescópio os satélites galileanos de Júpiter.
Anéis de Saturno
O script ainda precisa de muitos ajustes e otimizações, mas já realiza suas funções básicas de maneira satisfatória e estamos felizes em compartilhar seus primeiros resultados! Se a curiosidade bateu e você quer dar uma conferida em nossa programação orientada a gambiarras, o notebook python pode ser acessado no Google Colab.
O Maior Observatório Astronômico em solo brasileiro forma cientistas e provê dados observacionais há mais de quatro décadas e se prepara para receber novos telescópios.
O conjunto de cúpulas desenha a silhueta do Observatório do Pico dos Dias (OPD) sobre a Serra Mantiqueira, em Brazópolis – MG. [imagem: Wandeclayt M./@ceuprofundo]
O Observatório do Pico dos Dias é o maior e mais importante observatório astronômico em solo brasileiro. Do alto da Serra da Mantiqueira, a 1864 m de altitude, no município de Brazópolis, no sul de Minas Gerais, o Observatório tem servido à astronomia brasileira desde 1980, quando o telescópio Perkin-Elmer de 1,60 m de diâmetro – o maior em solo brasileiro – viu sua primeira luz.
Visão panorâmica do Pico dos Dias, mostrando parte dos 360 ha de área preservada que cercam as instalações científicas e de apoio administrativo do Observatório [imagem: Wandeclayt M./@ceuprofundo].
Abrigado sob uma cúpula de 15m de diâmetro, o Perkin-Elmer se ergue como uma colossal sentinela no Pico dos Dias. Seu domo reluzente pode ser visto a dezenas de quilômetros de distância, desenhando junto com as demais cúpulas do OPD a silhueta da imponente montanha.
Nossa Galáxia, a Via-Láctea, parece mergulhar na cúpula do grande telescópio Perkin-Elmer de 1,60m de diâmetro do Observatório do Pico dos Dias. [imagem: Wandeclayt M./@ceuprofundo]
O OPD é também o lar de dois outros importantes instrumentos para a pesquisa e a formação de pessoal em astronomia: os telescópios de 0,60 m Zeiss e Boller-Chivens compõem a tríade de instrumentos principais do OPD.
Os atuais telescópios no topo do Pico dos Dias logo terão companhia, numa expansão que incluirá um telescópio de 0,80 m, já recebido na sede do Laboratório Nacional de Astrofísica em Itajubá (MG) e um telescópio de 0,50 m dedicado à observação solar, já em testes Instituto Nacional de Pesquisas Espaciais (INPE) em São José dos Campos (SP).
Camera SPARC4 instalada no telescópio Perkin-Elmer de 1,60m no OPD.
Mas não é apenas a instalação de novos telescópios que mantém o OPD em condições de seguir relevante na astrofísica observacional. Os veteranos telescópios no sítio recebem novos instrumentos e atualizações em seus sistemas desde sua instalação. O mais recente desses novos apetrechos é a câmera SPARC4, desenvolvida pelo INPE e pelo LNA para instalação no telescópio Perkin-Elmer. A SPARC4 incorpora 4 sensores que observam simultaneamente em quatro bandas distintas sem a necessidade de troca de filtros, uma característica valiosa e incomum em imageadores astronômicos.
Com exceção do Zeiss de 0,60m, os demais telescópios do OPD, inclusive os futuros telescópios, possuem sistemas de controle que podem ser operados remotamente, permitindo a observação sem o deslocamento dos pesquisadores até o observatório.
O Laboratório Nacional de Astrofísica.
Toda a estrutura observacional da astronomia brasileira é gerida pelo Laboratório Nacional de Astrofísica (LNA), uma unidade de pesquisa vinculada ao Ministério da Ciência, Tecnologia e Inovações. Isso inclui não apenas o OPD, mas também os grandes telescópios instalados no Chile e no Havaí nos quais o Brasil tem participação.
Grandes telescópios como o SOAR (4 m) e o Gemini Sul (8 m) no Chile e o Gemini Norte (8 m) no Havaí são disponibilizados à comunidade de pesquisa brasileira através de um processo público de submissão de propostas e seleção por mérito.
E você já conhecia o OPD? Gostaria de saber mais sobre esse grande recurso da astronomia brasileira? Então você vai gostar de saber que o Projeto Céu Profundo, em parceria com a pós-graduação em Astronomia e Física Espacial da UNIVAP, está produzindo um documentário com imagens estonteantes de nosso amado observatório de montanha! Fique de olho em nossos publicações para saber onde assistir!
Descoberto em agosto pelo astrônomo Hideo Nishimura, o cometa C/2023 P1 é o cometa mais brilhante a cruzar o céu até este ponto de 2023. Infelizmente isso não quer dizer que será fácil visualizá-lo a olho nu. Após o periélio em 14/09, o cometa permanece a menos de 15º do Sol pelas próximas semanas, muito baixo sobre o horizonte e ofuscado pelo crepúsculo. É uma observação desafiadora.
De qualquer forma, é preciso saber exatamente onde procurar o cometa dia após dia, já que com a proximidade do periélio sua posição varia rapidamente. A ferramenta mais prática e versátil para rastrear esse movimento é o planetário virtual Stellarium (disponível em https://stellarium.org/), um software livre e gratuito que permite a simulação do céu para qualquer posição da superfície terrestre (ou mesmo da superfície de outros planetas) na data e horário solicitados.
Neste guia, mostramos um passo a passo de como adicionar o cometa C/2023 P1 (Nishimura) à base de dados de objetos do Stellarium, facilitando sua vida na hora de buscar no céu esse discreto viajante interplanetário.
1. Configurações
Acesse a janela de configuração no menu lateral ou através da tecla [F2] do Stellarium.
2. Plugins/Complementos
Através da aba Plugins (1), acesse o Editor do Sistema Solar (2) e clique em “Configurar”(3).
3. Importar Elementos Orbitais
Na aba Solar System (Sistema Solar), clique em “Import orbital elements in MPC Format…”
4. Pesquisa online.
Na aba “Online search” pesquise pelo “C/2023 P1”
5. Adicionando objetos.
Selecione as opções indicadas pelas duas setas no alto. Em seguida clique no botão “Add objects” (seta inferior).
6. Pesquisando na base de dados atualizada.
Acesse a Janela de Busca pela barra lateral ou pela tecla (F3).Pesquise o C/2023 P1 (Nishimura).Pronto! Se tudo correu bem, o cometa C/2023 P1 (Nishimura) será exibido no seu céu! Ou pelo menos no céu simulado do Stellarium.
Quando falamos em anéis em objetos do Sistema Solar você imediatamente lembrará dos exuberantes anéis de Saturno, ou talvez dos mais discretos, mas ainda assim impressionantes, anéis em torno dos gigantes Júpiter, Urano e Netuno revelados em imagens capturadas no infravermelho.
Mas três pequenos corpos do Sistema Solar, através de campanhas observacionais com protagonismo de pesquisadores e instituições brasileiros, revelaram na última década inesperados sistemas anéis a sua volta. E a última dessas descobertas foi anunciada em primeira mão pelo astrônomo Felipe Braga-Ribas em uma das lives do ciclo Abril pra Astronomia, promovido pela Sociedade Astronômica do Recife (SAR) e pelo Projeto Céu Profundo: um tênue segundo anel foi detectado em torno do objeto transnetuniano (50000) Quaoar!
A jornada de descoberta de anéis em torno de pequenos corpos começa com Chariklo, um asteroide da classe dos Centauros, que teve seu anel anunciado em um trabalho de Felipe Braga-Ribas (UTFPR) e colaboradores em 2014 – seguido pelo anúncio em 2015 do anel do planeta anão Haumea, em trabalho liderado por J. L. Ortiz (Instituto de Astrofisica de Andalucía). Mais recentemente, vimos o anúncio de um primeiro anel no objeto trasnetuniano (50000) Quaoar em trabalho publicado em 2023 por Bruno Morgado (UFRJ) e colaboradores, com dados de observações realizadas entre 2018 e 2021.
Mas se a detecção de anéis em pequenos corpos do Sistema Solar já é um resultado surpreendente que evidencia o poder das técnicas observacionais e computacionais envolvidas no processo, a surpresa, o espanto e o orgulho pela ciência brasileira dobra com o anúncio da descoberta de um segundo anel em torno de Quaoar!
Em um artigo aceito para publicação no periódico Astronomy & Astrophysics Letters (já disponível no ArXiv), Chrystian Pereira (Observatório Nacional) e colaboradores anunciam que durante observações de uma ocultação estelar por Quaoar em agosto de 2022, além da confirmação do primeiro anel já observado, os dados apontaram a existência de um segundo anel envolvendo o pequeno e distante corpo.
Quem é Quaoar?
Orbitando o Sol além da órbita de Netuno, a uma distância média que é 43 vezes maior que o raio da órbita da Terra, Quaoar é um pequeno objeto de diâmetro estimado em torno de 1100 km. Seu primeiro anel, batizado de Q1R foi descoberto em observações realizadas entre 2018 e 2021.
Suas pequenas dimensões (aproximadamente um terço do diâmetro da Lua) e sua grande distância tornam impossível fazer imagens que possam resolver detalhes de sua superfície ou mesmo definir sua forma, por isso, são usados métodos indiretos – mas muito precisos – para determinar sua geometria.
Como são realizadas as observações?
Pra deixar bem claro o tamanho do desafio: visto da Terra, Quaoar tem o diâmetro aparente de uma moeda de um real a 154 km distância. Então observações diretas não são uma opção. Mas os pesquisadores envolvidos no trabalho são capazes de computar com grande precisão sua órbita e prever quando e onde é possível observar o trânsito desse objeto em frente a uma estrela, ocultando-a. Esse pequeno e breve eclipse é capaz de nos revelar detalhes da geometria do corpo eclipsante e de quebra fornecer informações sobre a presença ou não de uma atmosfera ou de sua composição.
Representação dos resultados para o formato de Quaoar (no centro) e para a detecção dos anéis Q1R (externo) e Q2R (interno). A órbita do anel Q1R combina dados das observações recentes e das realizadas entre 2018 e 2021, publicadas por Bruno Morgado e colaboradores. A elipse verde marca a posição esperada para o limite de Roche considerando partículas de densidade 0,4 g/cm3 . A existência de anéis além do limite de Roche é inesperada e a influência de efeitos de ressonância com a rotação do corpo central e com a órbita do Weywot (um pequeno satélite de Quaoar) é considerada. A seta indica o movimento da estrela ocultada em relação a Quaoar. [créditos: C.L. Pereira e colaboradores]
Mas assim como um eclipse solar total só é visível ao longo da estreita faixa sobre a superfície terrestre onde a sombra da Lua é diretamente projetada pelo Sol, a observação de ocultações estelares por planetas ou pequenos corpos do Sistema Solar também exige que os observadores estejam posicionados no lugar e na hora certos para essa desafiadora observação. Determinar estas posições e instantes com precisão é o primeiro, mas não o único, desafio para a realização destas observações.
A imagem abaixo mostra a localização de observatórios posicionados na faixa de visibilidade da ocultação. Os pontos laranja representam estações onde o céu estava nublado durante a ocultação, os pontos pretos representam as estações onde a ocultação foi observada com sucesso e o ponto vermelho marca a estação onde a observação não detectou a ocultação. A linha sólida representa o limite da sombra de Quaoar e as linhas pontilhadas delimitam o contorno dos aneis Q1R e Q2R.
Posição dos observatórios envolvidos na aquisição de dados da ocultação da estrela Gaia DR3 4098214367441486592 pelo objeto trasnetuniano Quaoar [créditos: C. L. Pereira e colaboradores]
Limites na sensibilidade dos instrumentos e meteorologia desfavorável são o grande obstáculo para uma observação que exige grande precisão e sensibilidade instrumental. Por sorte, a faixa de ocultação cobria também o arquipélago do Havaí, um dos melhores sítios para observação astronômica do hemisfério norte e lar dos observatórios Gemini Norte, de 8.1m de abertura e CFHT (Canada-France-Hawaii Telescope) de 3.6m. Estes telescópios de grande abertura e com instrumentos de grande sensibilidade foram capazes de resolver a presença do tênue segundo anel de Quaoar.
E quais os resultados?
Os telescópios apontados para a estrela Gaia DR3 4098214367441486592 esperavam ver o brilho da estrela ser atenuado pela passagem de Quaoar, da mesma forma que a passagem da Lua eclipsa o brilho do Sol em um eclipse solar.
Comparando a variação do brilho da estrela em observações realizadas em diferentes posições é possível traçar o contorno do objeto eclipsante. Mais duas breves quedas no fluxo luminoso eram esperadas antes e após a ocultação pelo corpo central, causadas pelo já conhecido anel Q1R, envolvendo Quaoar a uma distância média de 4100km. A surpresa veio de outra sutil queda de fluxo encontrada nos dados numa posição intermediária entre Quaoar e o anel Q1R.
Dados do observatório Gemini Norte no infravermelho próximo (filtro z’) mostram as variações no fluxo luminoso medido da estrela e de Quaoar. A queda profunda na parte central do gráfico corresponde ao intervalo em que Quaoar eclipsou a estrela e as pequenas reduções de fluxo observadas pouco antes e pouco depois da ocultação revelam a presença dos anéis. [créditos: C.L. Pereira e colaboradores]
Esta sutil, mas perceptível, queda no fluxo antes e depois da ocultação principal é suficiente para revelar a presença de um segundo anel, orbitando Quaoar a 2500 km de distância.
As curvas de luz obtidas com os telescópios Gemini Norte e CFHT são coerentes com a existência de um segundo anel em torno de Quaoar. [créditos: C. L. Pereira e colaboradores].O conjunto de dados dos observatórios que realizaram com sucesso a observação da ocultação estelar por Quaoar revela também a diferença de desempenho dos grandes telescópios Gemini Norte e CFHT no monte Mauna Kea no Havaí.
A análise dos dados da observação permitem não apenas caracterizar Quaoar e seus anéis, mas abre também as portas para discutir a existência destas estruturas numa região além do limite de Roche clássico, onde se esperaria que essas partículas se aglutinassem formando um satélite. Efeitos de ressonância com o período de rotação de Quaoar e com seu pequeno satélite Weywot e a ocorrência de colisões mais elásticas entre as partículas dos anéis são fatores que podem contribuir para a existência e longevidade de anéis além do limite de Roche e o sucesso nos métodos usados em sua detecção podem significar que outros sistemas similares possam ser encontrados em futuras observações. E esperamos que mais uma vez a presença e o protagonismo brasileiro sigam fazendo a diferença.