Saturno: O Senhor dos Anéis e dos Satélites

Com 128 novos satélites anunciados, Saturno atinge a extraordinária marca de 274 satélites com órbitas confirmadas.

O satélite Titan aparece em primeiro plano, à frente do disco do planeta Saturno. Os anéis estaão alinhados com a linha de visidada e aparecem apenas como uma linha delgada. A sombra dos anéis é vista sobre Saturno.
O satélite Titan, com seus oceanos de metano líquido, é fotografado em frente a Saturno e seus anéis pelo sistema de imageamento científico da sonda Cassini, em maio de 2012. Dados: ISS/NASA, Processamento: Wandeclayt M./@ceuprofundo

Satélites na Contramão

Mas os novos satélites estão longe da exuberância de suas grandes luas descobertas até o Séc. XIX, como Titan e Enceladus. Os novos corpos são pequenos, distantes e irregulares, muitos deles em órbitas retrógradas (ou seja, na contramão da rotação de Saturno e das órbitas da maioria dos seus satélites) .

As pequenas dimensões das luas também as previne de assumir a forma esférica, comum a objetos maiores do Sistema Solar. São luas irregulares, com aspecto não muito diferente de uma batata.

Aumentando a Família

Pan, um pequeno satélite irregular, em forma de ravióli, orbita Saturno dentro da Divisão de Encke, uma

O anúncio oficial de pequenos corpos do Sistema Solar é feito através das circulares eletrônicas do Minor Planet Center da União Astronômica Internacional (IAU), órgão responsável pela nomenclatura de objetos do Sistema Solar e de estruturas em suas superfícies.

Nesta terça (11/3), três circulares trouxeram os elementos orbitais dos novos satélites:

MPEC 2025-E153 : SIXTY-ONE NEW SATURNIAN SATELLITES
MPEC 2025-E154 : THIRTY-FOUR NEW SATURNIAN SATELLITES
MPEC 2025-E155 : THIRTY-THREE NEW SATURNIAN SATELLITES

Mas para observar os novos membros da família de Saturno, você vai precisar de um instrumento pouco modesto. As luas recém-confirmadas são objetos pequenos, muitos deles provavelmente são fragmentos de uma colisão que não excedem 5 km de diâmetro. As observações que permitiram determinar as órbitas satélites foram realizadas com o telescópio CFHT (Canada France Hawaii Telescope) de 3,5 m de diâmetro, no monte Mauna Kea, no Havaí, complementando observações prévias do telescópio japonês Subaru, também instalado na montanha havaiana.

A descoberta e a determinação orbital de 64 satélites irregulares em observações realizadas no CFHT entre 2019 e 2021, é apresentada no artigo Retrograde predominance of small saturnian moons reiterates a recent retrograde collisional disruption de Edward Ashton e outros, disponível no ArXiv.

Titan (em primeiro plano) e Rhea (no centro) em imagem da sonda Cassini de 16 de junho de 2011. Dados: Imaging Science Subsystem/NASA. Processamento: Wandeclayt M./@ceuprofundo.

Infelizmente, durante o mês de março, Saturno fica fora do alcance dos telescópios ao passar pela conjunção com o Sol em 12/3, surgindo no início de abril no horizonte leste ao amanhecer.

2024 YR4: A Ameaça Vem do Céu!

Objetos como o asteroide recém descoberto 2024 YR4, com órbita que se aproxima ou intercepta a órbita da Terra, são de especial interesse para a astronomia pela possibilidade de um eventual impacto futuro com nosso planeta.

Usualmente, os dados observacionais preliminares proporcionam uma precisão muito limitada para a determinação das órbitas desses objetos e apenas após um período mais longo de observação é possível refinar esses cálculos, determinando uma trajetória precisa. De qualquer forma, por cautela, probabilidades iniciais de impacto acima de 1% merecem atenção. Afinal, nosso planeta já viveu um episódio traumático com um asteroide.

Extinção em Massa

Segundo o registro fóssil, a vida na Terra enfrentou cinco eventos de extinção em massa nos últimos 500 milhões de anos. O mais recente deles, responsável pela extinção dos dinossauros no final do período Cretáceo, há cerca de 65 milhões de anos, coincide com o impacto de um asteroide com tamanho estimado de 10 km na região da Península de Yucatán, no sul do Golfo do México.
Sobre a porção de terra da Península, estruturas semi circulares delimitam uma cratera de aproximadamente 160 km que tem a maior parte de sua área, incluindo o pico central do impacto, nas águas do Golfo.

O consenso atual da comunidade científica é de que esse impacto tenha sido a principal causa da última das grandes extinções. Isso justifica o constante monitoramento dos céus em busca de objetos cujas órbitas interceptem a da Terra e que possam apresentar riscos de colisão. Afinal, outros impactos menores também deixaram suas marcas na superfície de nosso planeta, inclusive em território brasileiro.

Crateras de Impacto no Brasil

Ao contrário das crateras de impacto na Lua, em Marte e em outros corpos do Sistema Solar onde não ocorrem processos erosivos pela chuva e pelo vento, as crateras na Terra são fortemente desbastadas ao longo do tempo e poucas conservam suas características ou dimensões originais. Ainda assim, vestígios de grandes impactos, mesmo sob a ação da erosão, sobreviveram à passagem das eras e podem ser encontrados hoje.

Em Tocantins, na Serra da Cangalha estão as estruturas de impacto mais bem preservadas em solo brasileiro. Uma formação com aproximadamente 14 km de diâmetro, com anéis concêntricos, formada a menos de 250 milhões de anos, pode ser vista com facilidade em imagens de satélite.

Serra da Cangalha. Cratera de Impacto com 13 km de diâmetro em Tocantins. Dados: Landsat 8/USGS/NASA. Processamento: Wandeclayt M.

Outras grandes estruturas de impacto no Brasil são o Domo de Araguainha, em Mato Grosso, e a Cratera de Colônia, em São Paulo.

Não esperamos que um objeto tão grande quanto o de Yucatán, com potencial para uma nova extinção em massa, esteja em rota de colisão com a Terra. Mas objetos menores, capazes de produzir eventos que causem danos localmente, sobretudo se atingirem zonas densamente habitadas, são abundantes no Sistema Solar atual.

Dimorphos na Caçapa do Meio!


Os programas de monitoramento dos Objetos Próximos da Terra, ou NEOs – na sigla em inglês para Near Earth Objects – buscam e monitoram esses objetos, permitindo determinar seus parâmetros orbitais e propriedades físicas. Esses dados podem garantir que danos sejam mitigados ou mesmo que missões capazes de defletir a órbita de objetos potencialmente perigosos possam ser projetadas e lançadas a tempo de prevenir desastres.

Uma tecnologia de redirecionamento orbital foi testada recentemente com a missão DART (Double Asteroid Redirection Test), lançada pela NASA em novembro de 2021.

A missão DART tinha como objetivo testar e validar o método de redirecionamento orbital através de impacto. Em 26 de setembro de 2022, a DART alcançou o asteroide (65803) Didymos e atingiu com sucesso sua pequena lua Dimorphos.

Imagem do asteroide Didymos e de sua lua Dimorphos capturada pela câmera de navegação da missão DART, dois minutos e meio antes do impacto. A imagem foi capturada a uma distância de 920 km. Créditos: NASA/Johns Hopkins APL.

Colidindo frontalmente com Dimorphos, esperava-se que a DART fosse capaz de “transferir momento” (essa é a forma técnica de dizer que a nave iria alterar a velocidade do pequeno satélite ) para o pequeno corpo, modificando a geometria de sua órbita. É similar ao que acontece com bolas de sinuca, quando uma bola em movimento colide com uma bola parada. A primeira bola pode parar completamente enquanto a segunda bola passa a se mover com a mesma velocidade da primeira.

Geometria do sistema Didymos-Dimorphos, do ponto de vista do Telescópio Espacial Hubble, no instante do impacto. A linha vermelha indica a trajetória da espaçonave DART. A linha laranja indica a direção do Sol. A linha azul é uma projeção do polo norte de Didymos, que também coincide com o polo orbital do sistema. Créditos: Jian Yang Li et al. disponível em: https://doi.org/10.1038/s41586-023-05811-4
As últimas seis imagens enviadas pela câmera DRACO, a bordo da DART, antes do impacto. A imagem no topo à esquerda cobre uma extens˜åo aproximada de 100 m, exibindo Dimorphos quase em sua totalidade. Última imagem completa, ao centro na linha inferior, tem uma resolução de 5.5 cm/pixel cobrindo uma extensão de 28 m na superfície de Dimporphos. Créditos: D. Bekker, C. Ernst, T. Daly, DRACO/APL/NASA.

Observações subsequentes confirmaram que a missão foi um sucesso, reduzindo em 33 minutos o período orbital de Dimorphos em torno de Didymos, passando de aproximadamente 11h55min para 11h22min.

Esse valor supera com larga margem a expectativa inicial de uma redução de 7 minutos no período orbital do sistema.

Objetos Próximos da Terra

É ótimo saber que já temos um método de redirecionamento testado e validado, porque o número total de asteroides próximos catalogados passa de 37 mil, com mais de 11 mil deles com diâmetro superior a 140 m e quase 900 excedendo 1 km.

Desses objetos, cerca de 2500 são potencialmente perigosos.

E se esses números parecem grandes, vale lembrar que nossa capacidade de detecção vem sendo constantemente ampliada e que a entrada em operação de telescópios com campos de visão amplos, dedicados a levantamentos (surveys) que varrerão grandes áreas do céu em noites sucessivas, proporcionarão um salto em nossa capacidade de detecção, com um consequente salto no número de objetos catalogados.

O gráfico abaixo mostra o total acumulado de asteroides próximos da Terra, descobertos até 12 de fevereiro de 2025.

Número acumulado de asteroides próximos da Terra, descobertos até 12 de fevereiro de 2025. Em azul, o total de asteroides. Em laranja, os asteroides com mais de 140 m de diâmetro. Em vermelho, os asteroides com mais de 1 km. Gráfico disponível em https://cneos.jpl.nasa.gov/stats. Acesso em 14 de fevereiro de 2025. Créditos: Alan Chamberlin (JPL/CALTECH).

De olho no 2024 YR4

Classificado até a data de publicação deste post na categoria 3 da escala de Torino, o asteroide 2024 YR4 ocupa o topo da lista de risco de Asteroides Potencialmente Perigosos (PHAs, na sigla em inglês para Potentially Hazardous Asteroids) e você provavelmente vai ver manchetes alarmistas nos sites de notícias e postagens sensacionalistas nas redes sociais. Mas esta classificação não significa que haja um impacto confirmado e de grandes proporções nos esperando.

Diagrama das órbitas dos planetas Mercúrio, Vênus, Terra, Marte e Júpiter. Estas órbitas são aproximadamente circulares. A órbita do asteroide 2024 YR4 está plotada no diagrama como uma elipse que interceptas as órbitas de Marte e da Terra e está totalemnte contida dentro da órbita de Júpiter.
Posição e órbita projetado do 2024 YR4 em 15 de fevereiro de 2025. Simulação realizada com o Orbit Viewer da plataforma JPL/Horizons. https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=2024%20YR4&view=VOP

A escala de Torino combina a probabilidade de impacto (na data desta publicação, calculada em aproximadamente 2%) com a extensão da potencial destruição causada pela colisão. No caso do 2024 YR4, um asteroide com diâmetro estimado em entre 40 e 90 m, a destruição seria restrita às vizinhanças da área do impacto.

Tabela com resumo do risco de impacto do asteroide 2024 YR4 computado com observações no período de 25 de dezembro de 2024 a 8 de fevereiro de 2025. Créditos: CNEOS.

Estes números podem, no entanto, variar bastante com a inclusão de novos dados observacionais coletados com telescópios terrestres até meados do primeiro semestre de 2025 e, após isso, pelo acompanhamento feito por telescópios espaciais infravermelhos.

Após essa janela de observação, o 2024 YR4 voltará a ser observável em 2028 em sua próxma passagem (sem risco de colisão) pelas proximidades da Terra.

O 2024 YR4 foi descoberto em 27 de dezembro de 2024, no Chile, por um dos quatro telescópios da rede ATLAS (Asteroid Terrestrial-impact Last Alert System). Composta por outros três telescópios (2 no Havaí e 1 na África do Sul), a rede ATLAS varre o céu várias vezes por noite em busca de objetos que se movam. Para ter uma ideia da eficiência desse sistema, até a data desta publicação, os telescópios da rede ATLAS já haviam descoberto 98 cometas, 4489 supernovas, 1160 asteroides próximos da Terra (NEAs) e 107 asteroides potencialmente perigosos (PHAs).

Imagens da descoberta do asteroide 2024 YR4 por telescópio do projeto ATLAS no Chile. Créditos: ATLAS.

A notificação emitida pela IAWN (International Asteroid Warning Network) estabelece 22 de dezembro de 2032 como a data para um eventual impacto. Notificações são emitidas para probabilidades de impacto acima de 1%, mas é comum que novas observações levem a uma queda nessa probabilidade.

Não Entre em Pânico!

Embora haja um risco baixo, mas real, de uma colisão no futuro próximo, o acompanhamento deste objeto pelos próximos anos permitirá traçar com menos incerteza sua órbita, definindo se o impacto de fato ocorrerá e quais estratégias de defesa podem ser adotadas. Até lá, cabe aos cientistas, autoridades e à população, garantir o apoio e o investimento contínuo na ciência, sabendo que além dos perigos que encontramos na superfície há ameaças que vem do céu.

Escala de Torino

Nível Zona/Cor Descrição
0 Sem Risco (Branco) A probabilidade de colisão é zero ou tão baixa que é efetivamente zero. Aplica-se também a pequenos objetos como meteoros que se desintegram na atmosfera.
1 Normal (Verde) Descoberta rotineira de objeto que com previsão de passagem próximo à Terra sem risco fora do comum. Observações telescópicas adicionais provavelmente reclassificarão para nível 0.
2 Atenção Astronômica (Amarelo) Encontro próximo mas não incomum. Colisão muito improvável. Merece atenção dos astrônomos, mas não há necessidade de atenção do público e de autoridades.  Observações adicionais provavelmente reclassificarão para nível 0.
3 Atenção Astronômica (Amarelo) Encontro próximo com chance de colisão ≥1% capaz de causar destruição localizada. Observações adicionais provavelmente reclassificarão para nível 0. Atenção do público e de autoridades é necessária se o evento ocorrer em menos de uma década.
4 Atenção Astronômica (Amarelo) Encontro próximo com de chance de colisão ≥1%, capaz de causar devastação regional. Observações adicionais provavelmente reclassificarão para nível 0. Atenção do público e de autoridades é necessária se o evento ocorrer em menos de uma década.
5 Ameaça (Laranja) Risco sério (porém incerto) de devastação regional. Atenção da comunidade astronômica é necessária para determinar conclusivamente se a colisão ocorrerá ou não. Planejamento governamental necessário se o evento ocorrer em menos de uma década.
6 Ameaça (Laranja) Risco sério (porém incerto) de catástrofe global. Atenção da comunidade astronômica é necessária para determinar conclusivamente se a colisão ocorrerá ou não. Planejamento governamental necessário se o evento ocorrer em menos de 30 anos.
7 Ameaça (Laranja) Encontro extremamente próximo com grande objeto, que se ocorrer dentro de um século, ameaça catástrofe global sem precedentes (porém incerta). Planejamento internacional é requerido para determinar conclusivamente e com urgência se a colisão ocorrerá ou não.
8 Colisão Certa (Vermelho) Colisão certa capaz de destruição localizada (terrestre) ou tsunami (oceânico). Frequência média: 1 evento a cada 50 a 1000 anos.
9 Colisão Certa (Vermelho) Colisão certa capaz de devastação regional sem precedentes para colisão em terra ou grande tsunami para colisão no oceano. Frequência média: 1 evento a cada 10.000 a 100.000 anos.
10 Colisão Certa (Vermelho) Colisão certa capaz de catástrofe climática global com potencial para ameaçar o futuro da civilização. Frequência média: menos de 1 evento a cada 100.000 anos.

Referências

[1] – Vasconcelos et al., The Serra da Cangalha impact structure, Brazil: Geological, stratigraphic and petrographic aspects of a recently confirmed impact structure,
Journal of South American Earth Sciences, Volume 45, 2013, Pages 316-330,
ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2013.03.007. Acesso em 12/2/2025.
[2] – Earth Impact Database – http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/SouthAmerica.html. Acesso em 12/2/2025.
[3] – Revista Pesquisa FAPESP, Serra da Cangalha – Marcas de um Meteorito, https://revistapesquisa.fapesp.br/marcas-de-um-meteorito/ . Acesso em 12/2/2025.
[4] – Thomas, C.A., Naidu, S.P., Scheirich, P. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature 616, 448–451 (2023). https://doi.org/10.1038/s41586-023-05805-2
[5] – Cheng, A.F., Agrusa, H.F., Barbee, B.W. et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature 616, 457–460 (2023). https://doi.org/10.1038/s41586-023-05878-z. Acesso em 12/2/2025.
[6] Li, JY., Hirabayashi, M., Farnham, T.L. et al. Ejecta from the DART-produced active asteroid Dimorphos. Nature 616, 452–456 (2023). https://doi.org/10.1038/s41586-023-05811-4. Acesso em 12/2/2025.
[7] Nancy Chabot, Elena Adams, Andy Rivkin, Jason Kalirai. DART: Latest results from the Dimorphos impact and a look forward to future planetary defense initiatives, Acta Astronautica, Volume 220, 2024, 118-125. https://doi.org/10.1016/j.actaastro.2024.04.001. Acesso em 12/2/2025.
[8] J. L. Tonry, L. Denneau, A. N. Heinze, B. Stalder, et al. ATLAS: A High-Cadence All-Sky Survey System. Publications of the Astronomical Society of the Pacific, Volume 130, 988. (2018) http://dx.doi.org/10.1088/1538-3873/aabadf . Acesso em 12/2/2025.
[9] Hannah Ritchie (2022) – “There have been five mass extinctions in Earth’s history” Publicado online em OurWorldinData.org. : ‘https://ourworldindata.org/mass-extinctions‘. Acesso em 15/2/2025.
[9] Urrutia-Fucugauchi, Jaime, Camargo-Zanoguera, Antonio, Pérez-Cruz, Ligia, Pérez-Cruz Guillermo . The Chicxulub multi-ring impact crater, Yucatan carbonate platform, Gulf of Mexico. Geofísica Internacional. 2011, 50(1), 99-127. ISSN: 0016-7169. Disponível em: https://www.redalyc.org/articulo.oa?id=56820060007. Acesso em 18/2/2025.

Cite esta publicação:
Wandeclayt M. (2025) - “A Ameaça Vem do Céu” Publicado online em CeuProfundo.com. Acessado em: 'https://www.ceuprofundo.com' [Recurso Online]

@article{ameacaNEO,
    author = {Wandeclayt M.},
    title = {A Ameaça Vem do Céu},
    journal = {Céu Profundo},
    year = {2025},
    url = {https://ceuprofundo.com}
}

Flagramos uma erupção solar! E seu tamanho é assustador!

Violência não é a resposta. Violência é a pergunta! E quando estamos falando de erupções solares a resposta é sim!

Erupções, flares e ejeções coronais de massa são violentos eventos produzidos por nosso Sol e que disparam um canhão de partículas eletricamente carregadas que se espalham pelo meio interplanetário e chegam a atingir a Terra, interagindo com nossa magnetosfera e produzindo efeitos como as belas auroras ou como inconvenientes interferências na ionosfera terrestre que afetam a propagação de sinais eletromagnéticos de comunicação e navegação.

Erupção registrado no limbo solar pelo satélite SDO da NASA.

Para falar com propriedade sobre as erupções e outros fenômenos solares, chamamos um reforço à altura da grandiosidade do evento: Dra. Claudia Medeiros, do canal Mais Que Raios, que complementa:

“Erupções solares costumam estar associadas também com as ejeções de massa coronal. Nessas espetaculares emissões, material solar relativamente mais frio que o entorno é liberado para o espaço com uma velocidade alta e pode se propagar em direção a Terra. Felizmente, apesar de imensa, essa estrutura se dissipa ao longo do caminho mas não sem antes deixar sua energia e campo magnético atuarem no espaço próximo e nesse caso, incluindo a Terra.”

Mas apesar destes eventos se tornarem mais frequentes à medida que o Sol se aproxima do máximo de atividade em um ciclo que se repete a cada 11 anos, flagrar ao telescópio uma grande erupção não é algo muito comum.

Mas eis que no dia 24 de dezembro ganhamos um presente inesperado de Natal! O presente chegou através de um telescópio especial para observação solar, equipado com um filtro que deixa passar apenas uma pequena fração de luz vermelha emitida por átomos de hidrogênio. Essa emissão, que chamamos de H-alfa, nos permite visualizar filamentos e protuberâncias ao observar o Sol. E na imagem acima, feita apressadamente pra não perder o registro do evento, flagramos uma gigantesca erupção no limbo solar!

A imagem foi feita com uma câmera DSLR (que não é o equipamento mais adequado para esse registro mas era o que permitiria uma captura mais rápida) e é uma combinação de poucos frames, com ajustes ligeiramente diferentes para capturar o máximo possível da estrutura. Infelizmente, quando montamos um arranjo com equipamento mais adequado, a estrutura já havia se desfeito, mas além do registro rápido com a DSLR, ficaram as lembranças de uma imagem muito mais rica visível diretamente na ocular do telescópio.

Mas queríamos ver em detalhes e ter uma ideia mais precisa das dimensões dessa colossal erupção! E para isso podemos sempre contar com o Solar Dynamics Observatory (SDO)! Um observatório solar orbital, equipado com câmeras que registram o Sol continuamente em imagens no ultravioleta. Sabendo o horário e data do evento, é possível pesquisar na base de dados pública do SDO e acessar imagens em diferentes comprimentos de onda para visualizar com excelente resolução erupções, flares e ejeções de massa!

O gigantismo da erupção salta aos olhos quando vemos o tamanho da Terra representado nas imagens para comparação. A imponente estrutura se ergue por mais de 250 mil km antes de se romper.

A dra. Claudia complementa:

“Apesar de ter acontecido no limbo, o que nos dá a possibilidade de, por contraste, medir suas dimensões que, conforme medido pelo Céu Profundo, atingiu mais de 250 mil Km, não foi possível observar a região ativa que deu origem a sua existência. Passados alguns dias pudemos observar a chance de ela estar associada a uma região ativa enumerada pela NOAA AR3534. Essa região está caminhando para o centro do disco solar e pode ser ainda protagonista de novas erupções solares, flares e até mesmo CME.

E tudo isso porque regiões ativas são coleções de manchas solares no Sol. Essas manchas solares possuem um campo magnético distorcido pela rotação do Sol e acabam por afetar o transporte de calor da zona convectiva, deixando ela mais fria que o entorno. Quando essas linhas de campo magnético se esticam, podem promover uma reconexão magnética liberando energia na forma de radiação, partículas e carregando propriedades do plasma solar para o meio interplanetário. Felizmente podemos observar esse fenômeno acontecendo pois eles emitem luz em diversos comprimentos de ondas, basta ter o equipamento certo ou aproveitar as ferramentas disponíveis na internet com os dados medidos das sondas espaciais.”

E a melhor parte é que essas imagens e dados estão disponíveis para pesquisadores profissionais e cientistas cidadãos e se você quer também ficar de olho na atividade do Sol, as imagens do Solar Dynamics Observatory podem ser encontradas no portal https://sdo.gsfc.nasa.gov/. Acesse, pesquise e se divirta e não esqueça de compartilhar conosco seus flagras dos violentos, mas sempre belos, eventos registrados nas imagens do SDO.

A Polêmica do Sol Esburacado!

O Sol observado no ultravioleta extremo, no canal de 193 Angstroms do instrumento AIA do telescópio SDO entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/AIA].

Dizer que um “buraco” surgiu no Sol, como vimos em muitos posts, ou mesmo chamar de “cratera” como vimos em uma matéria do jornal o Globo reproduzida no G1 pode gerar um pouco de confusão em quem lê (Ganhando o selo “Céu Profundo – Não é bem Assim!”).

Não é bem assim!

O Sol não tem uma superfície sólida como a Terra ou Lua. E portanto não se formam crateras no Sol. O que costumamos considerar como sua superfície é a camada que chamamos de ‘fotosfera’. A fotosfera é relativamente fria (menos de 6000 graus C) se a compararmos com seu núcleo, que atinge 15 milhões de graus.
Não tivemos nenhum buraco na fotosfera do Sol. O que vimos nas imagens foi uma falha nas camadas exteriores do Sol, a Coroa (ou Corona), que é uma região pouco densa mas muito quente (excedendo 1 milhão de graus) e que se eleva bem acima da fotosfera.

Não é bem assim: O Globo publicou uma boa matéria sobre o buraco coronal, mas usar o termo “cratera’ no título causa confusão (ninguém chama o buraco na camada de ozônio da Terra de cratera!). [imagem: reprodução/O Globo/NASA/SDO/AIA]

Nas últimas imagens capturadas pelo observatório espacial SDO, da NASA, a coroa aparece mais calma, mas é possível ver buracos coronais nas imagens em 193Å (esse é o comprimento de onda da luz registrada na imagem e fica na faixa do ultravioleta extremo) e muitas manchas na fotosfera nas imagens do instrumento HMI.

As câmeras do SDO registram imagens em preto e branco, mas para cada filtro utilizado as imagens recebem cores distintas.

Manchas solares. Regiões mais frias na fotosfera do Sol entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/HMI]

O SDO é um dos telescópios que monitora constantemente o Sol e nos ajuda a prever a chegada de partículas carregadas eletricamente ocasionalmente ejetadas pelo Sol em nossa direção. Essas partículas interagem com a atmosfera e com o campo magnético terrestre, podendo provocar interferência nas comunicações, no funcionamento de satélites e até em redes de transmissão de energia, sobretudo em altas latitudes, mais próximas dos polos magnéticos da Terra. Mas não são motivo para preocupação generalizada.

O Sol, visto no canal de 171Å do instrumento AIA do telescópio SDO. [NASA/SDO/AIA]
O Sol, visto no canal de 304Å do instrumento AIA do telescópio SDO.

imagens [NASA/SDO – HMI e AIA]

Telescópio Solar orbital da NASA observa cometa Nishimura

Cometa C/2023 P1 (Nishimura)
imageado pelo instrumento Heliospheric Imager
do observatório STEREO A no dia 23/09/2023.

O cometa Nishimura poderia ter dado um espetáculo nas últimas semanas, se não fosse sua posição desagradavelmente desfavorável para a observação no céu após sua passagem pelo periélio. Desde então sua elongação – ângulo de separção entre o cometa e o Sol – não excedeu os 14°. Isso significa que, mesmo o observador mais bem posicionado na superfície, vai ter o cometa a menos de 15° sobre o horizonte no momento do pôr do Sol e no crepúsculo astronômico (quando o Sol está entre 12° e 18° abaixo do horizonte) já não vai ser possível observar o Nishimura.

Mas não é fácil nos fazer desistir! Se não conseguimos observá-lo da superfície, vamos vasculhar os dados de um dos observatórios solares orbitais da NASA para encontrar o arredio cometa.

Cometa C/2023 P1 (Nishimura) – Animação com dados do observatório espacial STEREO A

A missão STEREO (Solar TErrestrial RElations Observatory) usa duas espaçonaves, uma à frente da Terra em sua órbita e outra atrás, para realizar observações estereoscópicas para o estudo do Sol e de suas Ejeções Coronais de Massa. Os dados de observações das STEREO, assim como os de todas as missões financiadas pela NASA, são acessíveis ao público a partir de bases de dados gratuitas e abertas.

Buscando as imagens recentes através do portal STEREO Science Center encontramos o cometa Nishimura no campo do instrumento Heliospheric Imager da STEREO A. Montando uma animação com as imagens recuperadas, podemos ver o cometa cruzando o campo, com direito a uma conjunção com o planeta Marte (é apenas um efeito de perspectiva, já que na verdade Marte está muito mais distante que o cometa).

Utilizamos dados até o dia 26/09, mas você pode seguir buscando dados mais atuais da STEREO para continuar de olho no tímido Nishimura enquanto não conseguimos imagens com nossos telescópios em Terra.

O Telescópio Espacial Spitzer

Muito antes do poderoso Telescópio Espacial James Webb desdobrar-se no espaço e apontar seu colossal espelho de 6,5m para planetas, nebulosas e galáxias, um pequeno telescópio espacial, com espelho de modestos 0,85m de diâmetro expandia nossa visão dos céus, observando estrelas nascendo e morrendo, nuvens moleculares, exoplanetas, galáxias com núcleos ativos e muitos outros objetos que guardam informações importantes na radiação infravermelha que – absorvida por nossa atmosfera – é completamente inacessível aos telescópios construídos no solo.

Seu nome é uma homenagem ao astrônomo Lyman Spitzer Jr, que em 1946, mais de uma década antes do lançamento do Sputnik – o primeiro satélite artificial, lançado pela União Soviética em 1957 – defendeu a ideia da construção de telescópios orbitais. Spitzer argumentou que a grande contribuição de um telescópio espacial não seria complementar nossa visão corrente do Cosmos, mas sim descobrir novos fenômenos sequer imaginados, realmente expandindo nosso conhecimento do universo e abrindo novas fronteiras para a pesquisa.

Lançado em 25 de agosto de 2003 e projetado para uma vida útil mínima de 2,5 anos, o telescópio espacial Spitzer manteve-se em funcionamento prestando bons serviços à astronomia por longos 16 anos de operação. Embora sua operação nominal dependesse de um sistema refrigerado a hélio líquido que se exauriu após 5,5 anos, foi possível continuar operando o telescópio em um regime de funcionamento restrito a frequências mais próximas do visível após o esgotamento do gás refrigerante.

Faixas de cobertura de comprimentos de onda do espectro eletromagnético dos telescópios espaciais Hubble, James Webb e Spitzer. [NASA/STScI. Traducão: Wandeclayt/Céu Profundo]

E mesmo após o término de sua vida operacional o Spitzer continua contribuindo com a ciência. Os dados coletados durante seus 16 anos de operação ainda alimentam pesquisas como a da astrônoma Yanna Martins-Franco, do Observatório do Valongo (OV/UFRJ) que utiliza em seu trabalho dados de galáxias luminosas em infravermelho observadas pelo Spitzer e disponíveis em seu banco de dados.

As galáxias NGC 5394 e 5395 formam o sistema de galáxias em interação ARP 84. Nesta imagem combinamos dados dos 4 canais do instrumento IRAC do Telescópio Espacial Infravermelho Spitzer.

O sistema de galáxias em interação ARP 84 (formado pelas galáxias NGC5394 e NGC5395) faz parte da amostra estudada por Yanna. Usamos dados nas quatro faixas do infravermelho capturadas pelo Spitzer através do instrumento IRAC (Infrared Array Camera) para compor esta imagem da ARP84. Como estas faixas estão fora do espectro visível, é preciso atribuir cores artificialmente a esses dados. Essa atribuição de cores, apesar de arbitrária, procura seguir um critério: aos comprimentos de onda mais longos são atribuídos aos tons mais avermelhados e os mais curtos aos azulados. Assim, o vermelho corresponde a emissão de estruturas mais frias, como a poeira que apareceria escura numa imagem em luz visível, mas que aparece em vermelho brilhante na imagem composta.

IRAC foi o único dos instrumentos que continuou em operação após o esgotamento do hélio líquido e embora os detectores operando em faixas mais longas -em 5,8 e 8,0 mícrons – estivessem quentes demais para realizar observações cientificamente úteis, os canais operando em 3,6 e 4,5 mícrons puderam funcionar com alto desempenho até a desativação do telescópio em 30 de janeiro de 2000.

E se você tem curiosidade em acessar os dados e construir suas próprias imagens com o telescópio Spitzer, a dica é navegar pelo IRSA – InfraRed Science Archive onde dados do Spitzer e de outros telescópios infravermelhos podem ser acessados e visualizados através de diversas interfaces de acesso.

Página inicial do NASA/IPAC InfraRed Science Archive, onde dados de vários telescópios infravermelhos podem ser acessados e visualizados.

Lua: Mares, oceanos e baías numa superfície desértica.

A face visível da Lua é marcada por vastas planícies escuras que contrastam com o terreno mais claro e mais acidentado do restante da superfície lunar. Apesar de não haver água no estado líquido na superfície da Lua, essas regiões recebem o nome de oceanos, mares, lagos e baías.

O mares lunares são na verdade um deserto seco e correspondem a regiões inundadas pelo basalto originado na atividade vulcânica lunar (https://doi.org/10.1029/2000JE001244) no período compreendido entre 4 e 1,1 bilhões de anos atrás(aqui é bom lembrar que no português brasileiro 1 bilhão equivale a 1.000.000.000).

A face visível da Lua (imagem da esquerda) e seu lado oculto (à direita) em mosaico composto por imagens da Lunar Reconnaissance Orbiter [crédito: NASA]

Por se tratar de regiões mais jovens do terreno, os mares exibem menos crateras de impacto que as regiões mais antigas e elevadas. Além disso, os mares possuem albedo mais baixo, refletindo menos luz e parecendo mais escuros, destacando-se – mesmo a olho nu – contra o terreno mais claro.

Os primeiros mapas a nomear acidentes do relevo lunar datam do século XVII e já registravam as planícies basálticas como mares e oceanos. Os mapas de Langrenus (1645), Hevelius (1647) e Riccioli (1651) traziam denominações distintas para os mares e para as demais formações da topografia da Lua. O sistema adotado por Riccioli é o que mais se aproxima da nomenclatura moderna, padronizada pela União Astronômica Internacional a partir da aprovação do mapa e catálogo Named Lunar Formations compilado por Mary Blagg e Karl Müller e publicado em 1935.

Mapa da Lua publicado em 1645 por Michael von Langren, o primeiro a atribuir nomes a formações da topografia lunar.
Mapa da Lua de Johanes Hevelius, publicado em 1647 na obra Selenographia.
Mapa lunar desenhado por Grimaldi e publicado por Giovanni Battista Riccioli no Almagestum Novum em 1651 [ETH-Bibliothek Zürich ]

O atlas de Blagg e Müller foi um primeiro passo na universalização da nomenclatura lunar, mas o aumento da resolução das fotografias lunares capturadas em telescópios terrestres e o mapeamento do lado oculto da Lua por espaçonaves exigiu sucessivas atualizaçoes nos mapas lunares nas décadas seguintes. Um curioso episódio seguiu o envio das primeiras imagens da face oculta da Lua pela sonda soviética Luna 3. Os cientistas soviéticos batizaram uma das raras planícies basálticas naquele lado da Lua de Mare Moscoviense, quebrando a tradição de nomear mares com nomes relacionados a àgua (Mar das Chuvas, Oceano das Tempestades…) ou a estados de espírito (Mar da Tranquilidade, Mar da Serenidade…) para o desconforto dos mais apegados à nomenclatura histórica.

A Assembleia Geral da União Astronômica Internacional (IAU General Assembly) de 1961 estabeleceu que além das regras em voga, ficasse estabelecido que: “Grandes áreas escuras são designadas por denominações em latim referentes a estados de espírito. Estes nomes são associados, de acordo com as regras de declinação e grafia do latim, aos substantivos apropriados: Oceanus, Mare, Lacus, Palus or Sinus. (As exceções Mare Humboldianum e Mare Smythii são mantidas, por estarem consagradas pelo uso). “

“Large dark areas are designated in Latin denominations calling up psychic states of minds. These names are associated, according to the Latin declination ruIes and spelling, to one of the appropriate substantives: Oceanus, Mare, Lacus, Palus or Sinus. (The exceptions, Mare Humboldianum and Mare Smythii, are preserved, due to long usage).” [XIth General Assembly. Berkeley, USA 1961]

A solução para o impasse soviético veio daí! Reza a lenda que o astrônomo Aldouin Dollfus, muito diplomaticamente, estabeleceu que o nome Mare Moscoviense estava de acordo com a regra, porque Moscou é um “estado de espírito”.

Mapa topográfico da Lua criado a partir de dados da sonda chinesa Chang-E1.

Câmera mais moderna do Telescópio Espacial Hubble volta a operar.

Telescópio Espacial Hubble após a missão de serviço SM-4 em 2009.

Notícia ansiosamente esperada pela comunidade astronômica: o Space Telescope Science Institute (STScI) informou em nota nesta segunda (15/03) que o instrumento Wide Field Camera 3 (WFC3) no Telescópio Espacial Hubble foi religada na noite do sábado 13/03 .

A WFC3 é o instrumento de imagem mais moderno em operação no Telescópio Hubble, instalado em sua última missão de manutenção e modernização no ano de 2009. A WFC3 combina dois detectores independentes, o UVIS, com sensibilidade do ultravioleta ao infravermelho próximo na faixa entre 200 e 1000nm, e o IR, sensível ao infravermelho na faixa entre 800 e 1700nm. Gerando imagens de até 4k x 4k pixels com o detector UVIS e de até 1k x 1k pixels no IR.

Estrutura interna da câmera WFC3 com com o caminho óptico até seus dois detectores: UVIS (caminho em azul) e IR (caminho em vermelho). [Crédito: Dressel, L., 2021. “Wide Field Camera 3 Instrument Handbook, Version 13.0” (Baltimore: STScI)]

O desligamento do instrumento ocorreu como parte dos procedimentos para entrada do observatório no modo de segurança após a detecção de uma falha de software no computador de voo principal do Hubble.

Durante a volta às operações na quinta 11/03, uma voltagem abaixo do nominal detectada no monitoramento de uma fonte de tensão da WFC3 disparou um alarme interno que impediu o religamento do instrumento.

Análises mostraram que os níveis de tensão das fontes da WFC3 caíram em função da degradação esperada em seus circuitos eletrônicos (a WFC3 foi instalada no Hubble em 2009) . O desligamento dos circuitos para a entrada no modo de segurança causou o resfriamento dos componentes. Este fator, unido à potência mais alta requerida para reiniciar o instrumento contribuíram para a flutuação de tensão que impediu o religamento do equipamento. A engenharia do Hubble concluiu que era seguro reduzir os limites para o desligamento automático do instrumento e religar a WFC3 no modo científico.

Antes de voltar a coletar dados científicos, a WFC3 passará por procedimentos de calibração e rotinas pré observacionais. Em seguida, a poderosa câmera retornará à sua agenda científica, coletando dados e ajudando a expandir nossa compreensão do universo.

Hubble volta a operar, mas com restrições.

Uma falha numa atualização de software, implementada para compensar flutuações no desempenho dos giroscópios e garantir maior estabilidade ao telescópio espacial, colocou o Hubble em modo de segurança no domingo (07/03). As operações foram retomadas na quinta (11/03), mas um de seus principais instrumentos, a WFC3 (Wide Field Camera 3), segue fora de serviço devido a um nível de tensão abaixo do nominal em seus circuitos.

Telescópio espacial Hubble e seus componentes [NASA/STScI]


Outra falha oportunamente descoberta foi um travamento do motor de acionamento da tampa de proteção frontal do telescópio, que deve se fechar caso o telescópio seja apontado na direção do Sol, evitando danos aos componentes ópticos e circuitos eletrônicos. Testes conduzidos pela equipe de solo mostraram que o motor reserva funciona normalmente e este assume agora a função de atuador primário da tampa.

Aguardamos ansiosos pela solução da pane na WFC3. E enquanto isso seguimos utilizando imagens de arquivo do Hubble em nossas oficinas de imagens astronômicas todas as quintas feiras na www.twitch.tv/ceuprofundo sempre a partir das 20h.

Nebulosa M57 – A Nebulosa do Anel. Imagem composta com dados do telescópio espacial Hubble [NASA/STScI – Wandeclayt Melo/Ceu Profundo]

Os primeiros passos da Perseverance

Rastros das rodas do jipe robô Perseverance após sua primeira movimentação na superfície de Marte [NASA/JPL-Caltech/University of Arizona]

Após o celebrado pouso na cratera Jezero, acompanhado por milhões de pessoas em todo o mundo, no dia 18/02, o jipe robô Perseverance dá os primeiros passos no terreno de Marte. As primeiras semanas após o pouso foram dedicadas a uma rotina de testes e diagnósticos de câmeras e outros sistemas e não incluíam testes de deslocamento do robô.

A primeira movimentação aconteceu no dia 04/03 e é apenas o primeiro passo na longa jornada de exploração que a Perseverance realizará durante sua missão. Em busca de traços da existência de vida primitiva microbiológica o robô desbravará o delta de um rio seco que um dia desaguou na cratera Jezero. O local exato do pouso, selecionado por um sistema autônomo de navegação que avaliava os riscos apresentados pelo relevo do terreno levou a Perseverance em segurança numa região pouco acidentada do solo. Mas a partir daqui sua tarefa exige um verdadeiro enduro para vencer dunas, encostas e terrenos pedregosos até atingir o Vale Neretva em busca de seus objetivos científicos.

A imagem acima, capturada pela câmera HiRISE, a bordo da espaçonave Mars Reconnaissance Orbiter, mostra duas rotas possíveis, em violeta e azul, para o deslocamento da Perseverance a partir do ponto do pouso (ponto branco, na imagem) até o um possível caminho (em amarelo) onde o robô estudará os sedimentos na região do delta.

Os futuros passos em Marte

Ilustração de modelo conceitual do Mars Ascent Vehicle, que enviará amostras do solo de Marte para um veículo em órbita. [NASA/JPL-Caltech]

Além dos objetivos de astrobiologia, a Perseverance também tem como missão caracterizar a geologia e o clima primitivo marciano e coletar amostras do solo para posterior envio à Terra. A campanha de recuperação das amostras já tem nome: MSR (Mars Sample Return) e envolverá as agências espaciais norte-americana e europeia, NASA e ESA, para uma complexa missão que envolverá veículos em órbita e na superfície de Marte. Na superfície, a missão Sample Retrieval Lander liberará um jipe robô (Sample Fetch Rover) para recuperar as amostras coletadas pela Perseverance e enviá-las através do Mars Ascent Vehicle (MAV) para a componente orbital da campanha. O orbitador será o responsável pelo trajeto final das amostras, de Marte para a Terra. O primeiro contrato para fornecimento de propulsores e sistemas de apoio para o MAV foi assinado com a empresa Northrop Grumman e entrou em vigor no dia 04/03. Trazer um pedaço de Marte para a Terra já é uma realidade!