A Polêmica do Sol Esburacado!

O Sol observado no ultravioleta extremo, no canal de 193 Angstroms do instrumento AIA do telescópio SDO entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/AIA].

Dizer que um “buraco” surgiu no Sol, como vimos em muitos posts, ou mesmo chamar de “cratera” como vimos em uma matéria do jornal o Globo reproduzida no G1 pode gerar um pouco de confusão em quem lê (Ganhando o selo “Céu Profundo – Não é bem Assim!”).

Não é bem assim!

O Sol não tem uma superfície sólida como a Terra ou Lua. E portanto não se formam crateras no Sol. O que costumamos considerar como sua superfície é a camada que chamamos de ‘fotosfera’. A fotosfera é relativamente fria (menos de 6000 graus C) se a compararmos com seu núcleo, que atinge 15 milhões de graus.
Não tivemos nenhum buraco na fotosfera do Sol. O que vimos nas imagens foi uma falha nas camadas exteriores do Sol, a Coroa (ou Corona), que é uma região pouco densa mas muito quente (excedendo 1 milhão de graus) e que se eleva bem acima da fotosfera.

Não é bem assim: O Globo publicou uma boa matéria sobre o buraco coronal, mas usar o termo “cratera’ no título causa confusão (ninguém chama o buraco na camada de ozônio da Terra de cratera!). [imagem: reprodução/O Globo/NASA/SDO/AIA]

Nas últimas imagens capturadas pelo observatório espacial SDO, da NASA, a coroa aparece mais calma, mas é possível ver buracos coronais nas imagens em 193Å (esse é o comprimento de onda da luz registrada na imagem e fica na faixa do ultravioleta extremo) e muitas manchas na fotosfera nas imagens do instrumento HMI.

As câmeras do SDO registram imagens em preto e branco, mas para cada filtro utilizado as imagens recebem cores distintas.

Manchas solares. Regiões mais frias na fotosfera do Sol entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/HMI]

O SDO é um dos telescópios que monitora constantemente o Sol e nos ajuda a prever a chegada de partículas carregadas eletricamente ocasionalmente ejetadas pelo Sol em nossa direção. Essas partículas interagem com a atmosfera e com o campo magnético terrestre, podendo provocar interferência nas comunicações, no funcionamento de satélites e até em redes de transmissão de energia, sobretudo em altas latitudes, mais próximas dos polos magnéticos da Terra. Mas não são motivo para preocupação generalizada.

O Sol, visto no canal de 171Å do instrumento AIA do telescópio SDO. [NASA/SDO/AIA]
O Sol, visto no canal de 304Å do instrumento AIA do telescópio SDO.

imagens [NASA/SDO – HMI e AIA]

Observatório do Pico dos Dias: O colosso astronômico brasileiro.

O Maior Observatório Astronômico em solo brasileiro forma cientistas e provê dados observacionais há mais de quatro décadas e se prepara para receber novos telescópios.

Iluminadas pela luz suave e alaranjada do nascer do Sol, edifícios com cúpulas semi-esféricas abrigando telescópios estão enfileiradas sobre o topo da montanha. Ao fundo, o horizonte é preenchido por montanhas mais distantes da Serra Mantiqueira.
O conjunto de cúpulas desenha a silhueta do Observatório do Pico dos Dias (OPD) sobre a Serra Mantiqueira, em Brazópolis – MG. [imagem: Wandeclayt M./@ceuprofundo]

O Observatório do Pico dos Dias é o maior e mais importante observatório astronômico em solo brasileiro. Do alto da Serra da Mantiqueira, a 1864 m de altitude, no município de Brazópolis, no sul de Minas Gerais, o Observatório tem servido à astronomia brasileira desde 1980, quando o telescópio Perkin-Elmer de 1,60 m de diâmetro – o maior em solo brasileiro – viu sua primeira luz.

Visão panorâmica do Pico dos Dias, mostrando parte dos 360 ha de área preservada que cercam as instalações científicas e de apoio administrativo do Observatório [imagem: Wandeclayt M./@ceuprofundo].

Abrigado sob uma cúpula de 15m de diâmetro, o Perkin-Elmer se ergue como uma colossal sentinela no Pico dos Dias. Seu domo reluzente pode ser visto a dezenas de quilômetros de distância, desenhando junto com as demais cúpulas do OPD a silhueta da imponente montanha.

Nossa Galáxia, a Via-Láctea, parece mergulhar na cúpula do grande telescópio Perkin-Elmer de 1,60m de diâmetro do Observatório do Pico dos Dias. [imagem: Wandeclayt M./@ceuprofundo]

O OPD é também o lar de dois outros importantes instrumentos para a pesquisa e a formação de pessoal em astronomia: os telescópios de 0,60 m Zeiss e Boller-Chivens compõem a tríade de instrumentos principais do OPD.

Os atuais telescópios no topo do Pico dos Dias logo terão companhia, numa expansão que incluirá um telescópio de 0,80 m, já recebido na sede do Laboratório Nacional de Astrofísica em Itajubá (MG) e um telescópio de 0,50 m dedicado à observação solar, já em testes Instituto Nacional de Pesquisas Espaciais (INPE) em São José dos Campos (SP).

Camera SPARC4 instalada no telescópio Perkin-Elmer de 1,60m no OPD.

Mas não é apenas a instalação de novos telescópios que mantém o OPD em condições de seguir relevante na astrofísica observacional. Os veteranos telescópios no sítio recebem novos instrumentos e atualizações em seus sistemas desde sua instalação. O mais recente desses novos apetrechos é a câmera SPARC4, desenvolvida pelo INPE e pelo LNA para instalação no telescópio Perkin-Elmer. A SPARC4 incorpora 4 sensores que observam simultaneamente em quatro bandas distintas sem a necessidade de troca de filtros, uma característica valiosa e incomum em imageadores astronômicos.

Com exceção do Zeiss de 0,60m, os demais telescópios do OPD, inclusive os futuros telescópios, possuem sistemas de controle que podem ser operados remotamente, permitindo a observação sem o deslocamento dos pesquisadores até o observatório.

O Laboratório Nacional de Astrofísica.

Toda a estrutura observacional da astronomia brasileira é gerida pelo Laboratório Nacional de Astrofísica (LNA), uma unidade de pesquisa vinculada ao Ministério da Ciência, Tecnologia e Inovações. Isso inclui não apenas o OPD, mas também os grandes telescópios instalados no Chile e no Havaí nos quais o Brasil tem participação.

Grandes telescópios como o SOAR (4 m) e o Gemini Sul (8 m) no Chile e o Gemini Norte (8 m) no Havaí são disponibilizados à comunidade de pesquisa brasileira através de um processo público de submissão de propostas e seleção por mérito.

E você já conhecia o OPD? Gostaria de saber mais sobre esse grande recurso da astronomia brasileira?
Então você vai gostar de saber que o Projeto Céu Profundo, em parceria com a pós-graduação em Astronomia e Física Espacial da UNIVAP, está produzindo um documentário com imagens estonteantes de nosso amado observatório de montanha! Fique de olho em nossos publicações para saber onde assistir!

O Telescópio Espacial Spitzer

Muito antes do poderoso Telescópio Espacial James Webb desdobrar-se no espaço e apontar seu colossal espelho de 6,5m para planetas, nebulosas e galáxias, um pequeno telescópio espacial, com espelho de modestos 0,85m de diâmetro expandia nossa visão dos céus, observando estrelas nascendo e morrendo, nuvens moleculares, exoplanetas, galáxias com núcleos ativos e muitos outros objetos que guardam informações importantes na radiação infravermelha que – absorvida por nossa atmosfera – é completamente inacessível aos telescópios construídos no solo.

Seu nome é uma homenagem ao astrônomo Lyman Spitzer Jr, que em 1946, mais de uma década antes do lançamento do Sputnik – o primeiro satélite artificial, lançado pela União Soviética em 1957 – defendeu a ideia da construção de telescópios orbitais. Spitzer argumentou que a grande contribuição de um telescópio espacial não seria complementar nossa visão corrente do Cosmos, mas sim descobrir novos fenômenos sequer imaginados, realmente expandindo nosso conhecimento do universo e abrindo novas fronteiras para a pesquisa.

Lançado em 25 de agosto de 2003 e projetado para uma vida útil mínima de 2,5 anos, o telescópio espacial Spitzer manteve-se em funcionamento prestando bons serviços à astronomia por longos 16 anos de operação. Embora sua operação nominal dependesse de um sistema refrigerado a hélio líquido que se exauriu após 5,5 anos, foi possível continuar operando o telescópio em um regime de funcionamento restrito a frequências mais próximas do visível após o esgotamento do gás refrigerante.

Faixas de cobertura de comprimentos de onda do espectro eletromagnético dos telescópios espaciais Hubble, James Webb e Spitzer. [NASA/STScI. Traducão: Wandeclayt/Céu Profundo]

E mesmo após o término de sua vida operacional o Spitzer continua contribuindo com a ciência. Os dados coletados durante seus 16 anos de operação ainda alimentam pesquisas como a da astrônoma Yanna Martins-Franco, do Observatório do Valongo (OV/UFRJ) que utiliza em seu trabalho dados de galáxias luminosas em infravermelho observadas pelo Spitzer e disponíveis em seu banco de dados.

As galáxias NGC 5394 e 5395 formam o sistema de galáxias em interação ARP 84. Nesta imagem combinamos dados dos 4 canais do instrumento IRAC do Telescópio Espacial Infravermelho Spitzer.

O sistema de galáxias em interação ARP 84 (formado pelas galáxias NGC5394 e NGC5395) faz parte da amostra estudada por Yanna. Usamos dados nas quatro faixas do infravermelho capturadas pelo Spitzer através do instrumento IRAC (Infrared Array Camera) para compor esta imagem da ARP84. Como estas faixas estão fora do espectro visível, é preciso atribuir cores artificialmente a esses dados. Essa atribuição de cores, apesar de arbitrária, procura seguir um critério: aos comprimentos de onda mais longos são atribuídos aos tons mais avermelhados e os mais curtos aos azulados. Assim, o vermelho corresponde a emissão de estruturas mais frias, como a poeira que apareceria escura numa imagem em luz visível, mas que aparece em vermelho brilhante na imagem composta.

IRAC foi o único dos instrumentos que continuou em operação após o esgotamento do hélio líquido e embora os detectores operando em faixas mais longas -em 5,8 e 8,0 mícrons – estivessem quentes demais para realizar observações cientificamente úteis, os canais operando em 3,6 e 4,5 mícrons puderam funcionar com alto desempenho até a desativação do telescópio em 30 de janeiro de 2000.

E se você tem curiosidade em acessar os dados e construir suas próprias imagens com o telescópio Spitzer, a dica é navegar pelo IRSA – InfraRed Science Archive onde dados do Spitzer e de outros telescópios infravermelhos podem ser acessados e visualizados através de diversas interfaces de acesso.

Página inicial do NASA/IPAC InfraRed Science Archive, onde dados de vários telescópios infravermelhos podem ser acessados e visualizados.

Como Escolher um Telescópio

A aquisição mais procurada por entusiastas da observação do céu é definitivamente o primeiro telescópio. Instrumentos ópticos de qualidade infelizmente não são tão baratos, e não é raro que a frustração em mexer em um telescópio desnecessariamente complicado para um iniciante acabe o transformando num cabide de roupa no meio da sala. Por isso, escrevemos um guia para ajudar nos detalhes que precisam ser considerados ao se adquirir sem arrependimentos o primeiro telescópio, com dicas de fabricantes nacionais:

Primeira regra de ouro: aprenda o céu da sua região! Quanto mais você souber sobre os objetos que quer e pode ver, mais informação terá para auxiliar na escolha do modelo ideal. Aplicativos gratuitos de cartas celestes e simulação do céu: Stellarium, Carta Celeste, Sky Map. Para conferir a poluição luminosa da sua região: https://www.lightpollutionmap.info/. Além disso, observe se há muitas obstruções no horizonte como prédios e montanhas.

Captura de tela do aplicativo Stellarium.

Informe-se MUITO sobre os tipos de telescópios amadores e como funcionam. Você descobrirá que existem diversos modelos e a partir daí pode começar a refinar a sua procura de acordo com seu orçamento, necessidades e limitações. Já fizemos um post sobre os tipos de telescópios aqui: http://ceuprofundo.com/2020/12/31/conhecendo-os-tipos-de-telescopio/

Which Telescope Is Better: A Reflector Or Refractor?
Alguns tipos de telescópios. (Fonte: Astronomy Trek)

Há outras questões além do céu que devem ser consideradas, como se o telescópio precisa ser leve e prático para ser transportado (a casa tem escadas, por exemplo?) e quanto espaço há disponível para observação e para guardar o equipamento.

Binóculos são uma excelente opção para começar a prática da observação. Possuem preços mais acessíveis e são de fácil manuseio, permitindo que a observação e o estudo do céu sejam suas únicas preocupações no início.

“Até onde esse telescópio vê?”

O telescópio não trabalha com limites de distância, mas sim de brilho. Quanto mais brilhante o objeto aparece no céu, mais nítida será a imagem dele. Há objetos na nossa própria galáxia mais difíceis de observar do que outras galáxias.

Pense no telescópio como um balde de coletar luz para os nossos olhos. Quanto maior for o diâmetro do telescópio, mais luz ele captura e, consequentemente, mais definição e objetos menos brilhantes é possível ver com ele. O pessoal do DeepSkyWatch fez uma comparação muito boa entre os objetos vistos por diferentes telescópios e céus: http://www.deepskywatch.com/Articles/what-can-i-see-through-telescope.html.

Um dos recursos do Stellarium é a simulação de telescópios, no menu superior direito, com o qual é possível ter uma ideia de como um objeto aparece na imagem de acordo com as configurações do telescópio que você estiver considerando adquirir.

Captura do programa Stellarium. A opção de simulação de telescópios está circulada em vermelho.
Simulação do Aglomerado da Borboleta visto por um telescópio de 254mm de diâmetro e 1130mm de distância focal, com uma ocular de 25mm.

Além da imagem

O telescópio é composto por diversas partes. Uma delas é a montagem, a parte do telescópio que fica encaixada entre o tubo e o tripé – ela não é soldada, o que significa que você pode trocá-la por outra a qualquer momento.

No modelo azimutal, o telescópio fica livre para se movimentar para todos os lados, não tem segredo. O modelo equatorial tem vantagens, mas com um preço: é mais robusta de se manuear e tem movimentação mais trabalhosa.

Claro que todo mundo tem capacidade de aprender a usar a montagem equatorial! Mas se você for iniciante, talvez queira investir mais tempo explorando o céu do que se preocupando com montagens robustas e caras que talvez sejam desnecessárias para você no início. Recomenda-se começar com a mais simples (azimutal) e substitui-la no futuro caso seja uma necessidade do observador.

Image
Exemplos de montagens de telescópios.

Todo telescópio precisa de pelo menos uma ocular. Preste atenção se o telescópio já vem com uma ou se é vendida separadamente. São facilmente intercambiáveis e podem ser compradas em kit ou avulsas a qualquer momento. Não precisa comprar um lote inteiro de cara sem saber se são compatíveis com padrão do telescópio e se serão úteis para você.

Diferentes oculares. (Fonte: Wikipedia)

“Qual o aumento desse telescópio?”

A rigor, o telescópio aumenta o quanto você quiser. PORÉM, quanto maior o aumento, menor será a nitidez e qualidade da imagem. O termo utilizado é AUMENTO ÚTIL, que significa o quanto é possível aumentar a imagem sem que ela perca muita qualidade. Para calcular o aumento útil, multiplique o diâmetro do telescópio por 2.

O aumento depende também da ocular, e a conta é simples: distância focal do telescópio dividida pela distância focal da ocular. Sempre faça essa conta antes de comprar uma ocular. Se o resultado for maior que o aumento útil, há grande chance de se frustrar.

Image
Exemplo de diferentes aumentos e cálculo da magnificação. (Crédito: André Luiz da Silva)

No nosso exemplo do Aglomerado da Borboleta, temos um aumento de 1130mm/25mm = 45,2x.

CUIDADO com anúncios que prometem demais: “aumenta até 400x, 500x, 1000x!”. Se vir esse tipo de sensacionalismo, ligue o desconfiômetro na mesma hora. Anúncios ideais não prometem imagens perfeitas e mostram todas as especificações do telescópio sem rodeios.

Image

Marcas com boa qualidade e sem enganação com o consumidor: Celestron, Sky-Watcher, Orion, Meade, GSO.

Hoje, temos excelentes fabricantes brasileiros(!!!): Dario Pires, Sebastião Santiago Filho, Sandro Coletti, Rodolfo Langhi, Telescópios Matão. Os telescópios desses fabricantes são tão bons quanto os importados, e duram anos se você cuidar deles com carinho e do modo adequado.

Gaia – O mapeador dos céus.

Diagrama Hertzprung-Russel de 1 milhão de estrelas do catálogo Gaia EDR3 a menos de 200 parsecs.
Composição artística do satélite Gaia com a Via Láctea ao fundo. [créditos: ESA/ATG Medialab e ESO/S. Brunier]

O satélite Gaia não nos envia imagens exuberantes como o Telescópio Espacial Hubble, mas também se consagrou como um marco na história da astronomia, medindo com precisão sem precedentes o brilho, a posição, a distância e a velocidade de quase dois bilhões de estrelas.

Determinar a distância de objetos astronômicos é essencial para compreender as propriedades físicas desses objetos. Uma estrela que nos parece muito brilhante, pode na verdade ser um objeto modesto mas muito próximo de nós. Por outro lado, fontes que parecem apenas uma pequena estrela podem na verdade corresponder a uma galáxia inteira nos confins do universo observável. E o Gaia é o campeão na determinação destes dados que nos permitem calibrar nossas escalas astronômicas de distância, entender melhor a evolução estelar e estimar com mais precisão a própria idade do universo superando inclusive o já impressionante desempenho de seu antecessor, o satélite Hipparcos (1989-1993).

O catálogo final do Gaia estará disponível em 2022, mas três liberações públicas de dados parciais já foram realizadas – a última delas (Early Data Release 3 – EDR3) em dezembro de 2020. Os dados são públicos e os acessamos para criar o gráfico abaixo, conhecido como diagrama HR e fundamental para o entendimento da evolução das estrelas, utilizando dados de 1 milhão de estrelas do catálogo do Gaia, localizadas a menos de 200 parsecs.

O astrofísico Alexandre Oliveira, professor e pesquisador da Universidade do Vale do Paraíba, em São José dos Campos (SP), nos conta que “A excelente qualidade destes dados permite enxergar detalhes nunca antes percebidos, como a assinatura de tipos diferentes de Anãs Brancas, com núcleos ricos em Hidrogênio, Hélio ou Carbono, representados pelas três faixas estreitas no canto inferior esquerdo. Também é visível, na região das Gigantes Vermelhas, um adensamento de forma longa e diagonal conhecido como Red Clump, associado a estrelas de baixa massa que queimam Hélio em seus núcleos.

Diagrama HR de uma amostra de 1 milhão de estrelas localizadas a menos de 200 parsecs (652 anos luz) [créditos: Gaia/ESA/DPAC, Wandeclayt M./Céu Profundo]

Criando Imagens Astronômicas com Telescópio Hubble

Imagem RGB do planeta Marte produzida com dados de arquivo do telescópio espacial Hubble [imagem: Hubble/STscI. processamento: Wandeclayt M.]

Que tal produzir imagens como esta do planeta Marte utilizando dados reais do telescópio espacial Hubble? Isto é não apenas possível como até relativamente simples. E vamos mostrar pra você, passo-a-passo, como pesquisar o arquivo do Hubble em busca de dados e como processá-los para gerar uma imagem colorida como esta.

Os dados do Hubble e de quase todos os grandes observatórios astronômicos são disponibilizados integralmente ao público após um período de exclusividade para o pesquisador que propôs a observação. Isto permite que novas descobertas sejam feitas por outros grupos de cientistas ao analisar os dados arquivados e isso inclui a possibilidade de seu uso por cientistas cidadãos.

Colocando a mão na massa!

Vamos mostrar agora um exemplo prático, fácil e rápido, que não requer prática nem tampouco habilidade, pra mostrar que qualquer criança brinca e se diverte com o telescópio espacial mais querido do mundo!

Marte e a Terra tiveram uma aproximação histórica em agosto de 2003, quando os dois planetas estiveram a menos de 56 milhões de km de afastamento. Que tal se procurarmos observações do Hubble nesse período para criar nossa imagem de Marte?

Para isso vamos acessar a interface de busca no arquivo do Hubble em

https://archive.stsci.edu/hst/search.php

Faremos uma busca por imagens do instrumento WFPC2 (Wide Field Planetary Camera 2), tendo como alvo o planeta Marte (Target Descrip: Mars) e início da observação após 20 de agosto de 2003 (Start Time: > 2003 aug 20). Escolhemos essa data porque a oposição ocorreu no dia 28 de agosto e a máxima aproximação no dia 27 de agosto, então qualquer imagem capturada aproximadamente uma semana antes ou após estes eventos pode ser interessante.

Seleção de parâmetros de busca no arquivo do Hubble.

Entre os resultados dessa busca, vemos que há observações bem promissoras próximas do nosso período de interesse. Vamos agora selecionar quais delas usaremos para compor nossa imagem!

Nosso objetivo é criar uma imagem com cores razoavelmente naturais de Marte.
Mas a câmera do Hubble é monocromática, assim como todas as câmeras astronômicas científicas de alto desempenho instaladas em telescópios para pesquisa. Mas se temos à nossa disposição apenas imagens originalmente em escala de cinza e queremos chegar numa imagem colorida, qual a magia necessária?

Escolhendo os ingredientes do bolo


O segredo para gerar uma imagem colorida a partir das imagens monocromáticas do Hubble – ou de qualquer outro telescópio – é atribuir as cores vermelha (R), verde (G) e azul (B) para imagens em tons de cinza e combiná-las num arquivo colorido RGB.

Isto funciona porque cada arquivo em tons de cinza registrou apenas uma “cor” da luz incidente. Escrevemos cor entre aspas porque na verdade algumas faixas de comprimento de onda registrados pela câmera nem caracterizam “cores” da maneira como as enxergamos. Afinal, que cor é infravermelho? Ou ultravioleta?

Mas vamos ao que interessa! Que arquivos usaremos para compor nossa imagem?
Nossa sugestão é usar os arquivos do dia 26 de agosto, registrados através dos filtros F631N (vermelho), F502N (verde) e F401M (azul). O horário de captura é uma informação importante também. Como Marte também está girando em torno de seu eixo, é importante que não haja um grande intervalo entre cada exposição, para que possamos sobrepor as três imagens sem que o movimento de rotação do planeta atrapalhe a composição.

Clicando no nome dos arquivos selecionados, uma imagem prévia é exibida para inspeção.
E se tudo parecer bem, podemos partir para a requisição dos arquivos originais.

Pré visualização de um dos resultados da busca no sistema de arquivos do Hubble.


Requisitando os arquivos originais

Após a inspeção dos arquivos selecionados, estamos prontos para baixar os dados para nosso processamento. No alto da tela, use o botão <submit marked data for retrieval from STDADS>.

Na tela seguinte, informe seu email, marque a opção “Calibrated” e selecione a extensão “c0m“. Clique no botão <Send retrieval request to ST-DADS>.

Se tudo deu certo, você verá uma tela de confirmação e logo receberá um email com o link para a pasta de download dos arquivos que você poderá acessar usando seu browser ou um cliente de ftp.

Tela de confirmação da requisição de arquivos do Hubble.

E onde eu coloco esses arquivos?

Excelente pergunta! Para abrir e manipular os arquivos FITS precisaremos do programa gratuito SAO Image DS9. Ele está disponível para os sistemas operacionais Linux, Mac OS e Windows no link abaixo.

https://sites.google.com/cfa.harvard.edu/saoimageds9/download

Agora que você instalou e baixou o DS9, podemos ir para a parte mais divertida de nossa tarefa.

No menu do DS9 clique em Frame > New Frame RGB.
Além da janela principal do DS9, a janela RGB será exibida:

Na primeira coluna (current) da janela RGB selecionamos que camada do arquivo está ativa e na segunda coluna (view) temos as caixas de seleção de visibilidade das camadas. Vamos manter a seleção atual e carregar o arquivo da camada vermelha (Red) de nossa composição. Podemos usar o menu File > Open, ou os botões <file> e <open> na barra de botões da interface gráfica, para carregar o arquivo correspondente à cor vermelha (Filtro F631N).

Certinho. Carregamos o arquivo. Mas talvez essa tela preta não seja exatamente o que você estava esperando. Calma! A informação está aí em algum lá! Vamos procurá-la!

Clique nos botões <scale> e <linear>, esses que estão em azul na janela acima. Agora vá no menu Scale > Scale Parameters. Você verá agora um histograma como o da janela abaixo:

Esse histograma nos mostra que toda a informação está concentrada nos tons mais escuros. Para tornar essa informação visível, mudaremos manualmente os limites Low e High. Colocamos os valores 200 (Low) e 2400 (High), como na janela abaixo, e clicamos em <Apply>.

E o resultado é este:

Agora temos a primeira camada de nossa imagem carregada e visível.
Em seguida, voltamos à janela RGB e marcamos na coluna current a camada verde (Green) e voltamos ao menu File > Open (ou aos botões na barra) para carregar o arquivo correspondente à cor verde (filtro F502N). Repetimos a operação marcando a camada azul (Blue) e carregando o arquivo correspondente à cor azul (filtro F401M).
Se necessário repita o procedimento que utilizamos na camada vermelha com os histogramas de cada camada.

É possível também que as imagens não estejam completamente alinhadas, como no exemplo abaixo. E precisaremos alinhá-las manualmente.

O formato FITS suporta informações de WCS (World Coordinate System) – o sistema de coordenadas celestes utilizado – o que é fundamental para alinhar imagens de estrelas e de objetos de céu profundo como galáxias e nebulosas. Mas no caso dos planetas, o sistema de coordenadas não vai nos ajudar muito, porque estes objetos se deslocam com relação ao fundo de estrelas. A alternativa aqui, já que Marte está centralizado em cada frame, é tentar fazer o alinhamento diretamente pelas bordas das imagens.

Na janela RGB, acesse o menu e selecione a opção align > image.

Se tudo der certo, as imagens estarão coincidentemente sobrepostas e este será o resultado:

É possível exportar a imagem final em vários formatos (tiff, jpeg, png, gif) no menu File > Save image.

Você pode continuar experimentando valores diferentes nos parâmetros de escala do histograma. Pode inclusive experimentar outros modos além do Linear. Você vai ver que cada mudança de parâmetro pode evidenciar ou suprimir certas características. Você pode também experimentar com imagens capturadas em outros filtros, acrescentando dados em infravermelho ou ultravioleta, por exemplo. Uma dica é atribuir as camadas R, G e B por ordem decrescente de comprimento de onda. Use o R para comprimentos de onda mais longos, G para intermediários e B para os comprimentos de onda mais curtos.

Deu pra notar que as possibilidades são infinitas, né? Então que tal explorar os arquivos e tentar outras composições? Nós vamos querer ver os resultados! Então não esquecer de marcar o @ceuprofundo quando postar suas imagens nas redes sociais!

Conhecendo os tipos de telescópio.

Antes de pensar em comprar o seu primeiro telescópio – ou mesmo se você já deu esse primeiro passo – é importante conhecer os principais tipos de telescópio, suas características, vantagens e desvantagens. Veremos que há várias configurações ópticas distintas, cada uma delas se encaixando numa faixa de preços e oferecendo melhor desempenho na observação de algumas classes de objetos.

Veremos também que a abertura é o principal parâmetro óptico de um telescópio, mas que nem sempre é recomendável investir no maior telescópio que você possa comprar. Um grande telescópio refletor de 40cm de diâmetro pode produzir imagens espetaculares, mas é um instrumento grande (pode chegar a 2 metros de altura), pesado, virtualmente impossível de se transportar. É o tipo de instrumento que vai requerer um abrigo permanente. De preferência, em um observatório fixo em algum lugar afastado da poluição luminosa das áreas urbanas. Se você não dispõe dessa estrutura, dificilmente vai poder desfrutar satisfatoriamente de um instrumento dessas dimensões.

É bom ter em mente que qualidade tem seu preço mas que nem sempre o telescópio mais caro lhe proporcionará a melhor experiência.

Tipos de configuração óptica.

Telescópios são coletores de luz. Recebem a luz incidente em suas objetivas e a exibem em suas oculares. A primeira classificação importante diz respeito ao tipo de objetiva empregada. Há telescópios que utilizam espelhos para capturar a luz dos objetos celestes. Há telescópios que utilizam lentes para isso. E há telescópios que combinam lentes e espelhos. Cada uma destas construções possui suas vantagens e desvantagens e há astrônomos amadores que chegam a investir em todos eles, para ter um instrumento otimizado para cada tipo de observação.

TelescópioObjetiva
Refrator (Luneta)Lentes
RefletorEspelhos
CatadióptricoLentes e Espelhos

Diâmetro e distância focal.

Diâmetro e distância focal são o sobrenome do seu telescópio. Após informar o tipo de óptica (Refrator/Refletor/Catadióptrico) você vai dizer o seu diâmetro e sua distância focal.
Assim saberemos sua capacidade de captação de luz (proporcional à área da objetiva), sua resolução (proporcional ao diâmetro da objetiva) e poderemos estimar o tamanho do campo de visão do telescópio (inversamente proporcional à distância focal).
Podemos falar por exemplo em um telescópio refletor newtoniano com diâmetro D = 200 mm e distância focal F = 1200mm. Uma maneira mais comum de informar a distância focal é através da razão entre D e F. Este mesmo telescópio pode ser identificado como tendo D=200mm com f/6. Ou, seja: A distância focal é igual a 6 vezes a abertura.

É importante saber o diâmetro do seu instrumento porque ele nos diz o quanto ele é capaz de coletar a luz de objetos distantes e difusos e o quanto ele é capaz de revelar detalhes e estruturas dos objetos observados ou de, por exemplo, ser capaz de ‘separar’ onjetos que parecem muito próximos, como estrelas duplas.

E é importante saber a distância focal porque precisamos dela para calcular o aumento do instrumento. Para encontrar o aumento utilizado, divida a distância focal da objetiva pela distância focal da ocular. Por exemplo: um telescópio com 1200mm de distância focal, com uma ocular de 12mm proporcionará um aumento de A = 1200mm/12mm = 100 vezes.

Refratores

Telescópio Refrator de 120mm f/7.5 [imagem: Sky-Watcher]

Telescópios refratores utilizam apenas lentes em sua construção e são descendentes diretos do primeiro telescópio astronômico utilizado por Galileu Galilei em no século 17.
Um bom telescópio refrator produz imagens brilhantes, com excelente contraste e nitidez.
Mas os refratores de baixa qualidade, como as pequenas lunetas (até 60mm de diâmetro) normalmente vendidas em lojas de departamento formam imagens que sofrem de sérias aberrações. Como cada cor sofre desvios diferentes ao atravessar uma lente, a imagem formada possui focos diferentes para cada cor produzindo a aberração cromática, percebida na forma de franjas coloridas ao redor dos objetos observados.
Para corrigir a aberração cromática, os instrumentos mais caros e de melhor qualidade (acromáticos e apocromáticos) utilizam conjuntos de lentes combinadas em elementos duplos (dubletos) ou triplos (tripletos), feitos com vidros de densidades diferentes e com diferentes geometrias. Obviamente, a construção mais complexa e o desempenho superior, especialmente para astrofotografia, são refletidos nos preços dos bons telescópios refratores, tornando proibitivo o custo de instrumentos com mais de 120mm de abertura.
Na comparação com outros instrumentos de mesma abertura, a imagem produzida pelos refratores apocromáticos é supera não apenas o desempenho dos refratores acromáticos, mas também dos refletores e catadióptricos.

Telescópios refratores normalmente são apresentados com distâncias focais longas, como f/10 ou f/11. Isso os torna excelentes para a observação da Lua e de planetas, proporcionando grandes aumentos com imagens brilhantes e ricas em contraste.

São também instrumentos que exigem pouca manutenção, sem necessidade de alinhamento periódico ou realuminização de suas superfícies ópticas. Se conservados em ambiente seco e protegidos de fungos, são instrumentos que sobrevivem por gerações.

Refletores

Refletor Newtoniano de 2000mm f/5 [imagem: Sky-Watcher]

Na relação custo benefício, os telescópios que utilizam espelhos para coletar a luz incidente dos objetos astronômicos são os campeões absolutos.
A configuração desenvolvida por Isaac Newton em 1668 é simples, robusta e eficiente: um espelho côncavo, com superfície esférica ou parabólica, reflete os raios incidentes em direção a um ponto focal. Um espelho plano, posicionado sobre o eixo óptico e inclinado 45° desvia a luz perpendicularmente para ser observada na lateral do tubo óptico.

Por utilizar espelhos como objetiva, os telescópios refletores eliminam o problema da aberração cromática, já que todos os raios sofrem a mesma reflexão independente da cor.
Apesar disso, outras aberrações decorrentes da geometria do espelho podem estar presentes, com a aberração esférica.

Cada lente empregada num telescópio refrator precisa ter duas superfícies polidas com grande precisão. No caso de um refrator apocromático que utiliza um conjunto de três lentes (tripleto) é necessário polir seis superfícies ópticas. Enquanto isso, o espelho primário de um telescópio refletor precisa de apenas uma superfície polida e aluminizada. Com isto temos uma construção mais simples e barata, que permite obter instrumentos de grandes diâmetros por preços acessíveis. Espelhos podem ser construídos com vidros mais baratos que lentes, já que a luz não precisará atravessá-los. No entanto é importante que os vidros utilizadas sejam de baixa expansão térmica, prevenindo deformações sob variação de temperatura.

Telescópio refletor newtoniano de 200mm em montagem dobsoniana. [imagem: Sky-Watcher]

A construção do tubo óptico de um telescópio newtoniano é simples e pode ser feita de forma artesanal, utilizando tubos de PVC, papelão ou apenas um esqueleto montado com hastes ou pequenos tubos e pode ser montado em bases de madeira sem necessidade de tripés caros e complexos. Esta configuração caseira foi desenvolvida e popularizada por John Dobson a partir dos anos 1970 e se mantém popular entre os astrônomos amadores de hoje. Comparando preços de instrumentos industrializados de marcas internacionais como Sky-Watcher, GSO, Orion, Meade e Celestron, é possível encontrar telescópios dobsonianos com diâmetros de 20 a 25cm mais baratos que apocromáticos de 12cm.

Mas não existe almoço grátis. Ao contrário dos refratores (e dos catadióptricos) os telescópios refletores precisam de cuidados e manutenção constantes. Quando transportados é comum que ocorra algum desalinhamento entre os espelhos primário e secundário. Este procedimento de alinhamento – que nós chamamos de colimação – precisa ser repetido com frequência e é fundamental para manter a qualidade da imagem formada. A limpeza dos espelhos também não é trivial e deve ser feita com cuidado, evitando danificar a fina camada refletora de alumínio. Eventualmente pode ser necessário refazer a aluminização dos espelhos, para restaurar seu desempenho.

Estas tarefas podem acabar se tornando prazerosas para a maioria dos astrônomos amadores, mas para outros simplesmente é algo a ser evitado.

Note também que nem toda a área do espelho primário é utilizada. O espelho secundário causa a obstrução da região central do primário, reduzindo a quantidade de luz coletada.

Telescópios refletores variam normalmente entre diâmetros de 11 a 40cm, com distâncias focais curtas – entre f/4 e f/7, tipicamente – proporcionando vastos campos, ideais para a observação de objetos de céu profundo, como galáxias, nebulosas e aglomerados estelares.

Catadióptricos

Telescópio Schmidt-Cassegrain de 8″ (200mm) f/10 em montagem equatorial motorizada. [imagem: Celestron]

Telescópios cadadióptricos combinam lentes e espelhos numa construção compacta e robusta com imagens de alto desempenho. Os catadióptricos mais comuns são dos tipos Schmidt-Cassegrainn (SCT) e Maksutov-Cassegrain.
São telescópios que utilizam em sua seção refletora uma configuração diferente dos newtonianos. A configuração do tipo Cassegrain, o espelho secundário reflete a luz de volta para o centro do espelho primário, enquanto na configuração newtoniana a luz é refletida perpendicularmente para a ocular na lateral do tubo.
A configuração Cassegrain leva a um desenho compacto, com tubos ópticos curtos mesmo para instrumentos com números f longos, tipicamente acima de f/10.
Na entrada do tubo, uma lente corretora do tipo Schmidt ou Maksutov complementa o conjunto, resultando em um telescópio que combina as melhores características dos refletores e refratores para reduzir aberrações e produz um tubo fechado, robusto, fácil de transportar e de baixa manutenção.

Os Maksutov-Cassegrain são comuns na faixa de 90mm a 150mm de diâmetro, entre f/12 e f/15, enquanto os SCT aparecem entre 200mm (8″) e 400mm (16″), geralmente com f/10. Note que são instrumentos de grande abertura, o que garante a captação de luz necessária para a observação de objetos de céu profundo, mas com grandes distâncias focais, forçando aumentos maiores e limitando o campo observável. Por outro lado, as distâncias focais mais longas são uma vantagem para a observação da Lua e planetas, mas a obstrução central do espelho – assim como ocorre nos newtonianos – reduz a nitidez e os detalhes na imagem. Resumindo, os SCT e os Maksutov podem ser utilizados para qualquer tipo de observação, mas possuem pontos fracos em todas elas.

Isso não impede o Schmidt-Cassegrain de 8 polegadas (200mm) de ser talvez o instrumento mais vendido do mundo. Você certamente viu muitas imagens impressionantes de planetas ou objetos de céu profundo produzidas pelos célebres Celestron C8. E essa popularidade não é obra do acaso. O SCT de 8 polegadas é o canivete suiço da astronomia amadora. Versátil, portátil, robusto e se não é uma pechincha também não chega a custar uma fortuna em sua faixa de diâmetro.

Dá pra resumir?

Dá sim.

Lunetas entre 80 e 120mm são o melhor instrumento para observar a Lua, planetas e estrelas duplas. São uma boa escolha como instrumento de entrada para o iniciante por serem mais fáceis de manter, transportar e operar.
Lunetas maiores são pouco comuns, principalmente porque seriam muito caras.

Refletores com abertura entre 114mm e 150mm são instrumentos acessíveis, com o menor custo por cm de abertura, e também são uma boa opção de entrada. Mas é bom ter em mente que os refletores exigem mais cuidados que uma luneta e o conjunto de espelhos espelhos exige alinhamentos periódicos.
Refletores a partir de 200mm são a melhor opção para observar objetos de céu profundo, como galáxias, nebulosas e aglomerados estelares.

Telescópios Schmidt-Cassegrain ou Maksutov-Cassegrain são versáteis, compactos, leves e fáceis de transportar. Não são especialmente indicados para nenhum tipo de observação mas conseguem um bom desempenho tanto na observação planetária e lunar quanto na de céu profundo.

Tipo de telescópioVantagensIndicado para:
RefratorGrande nitidez e contrasteLua e planetas
RefletorMelhor custo por diâmetroCéu profundo
CatadióptricoRobusto e compactoMulti uso