Os Dois Anéis de Quaoar.

Quando falamos em anéis em objetos do Sistema Solar você imediatamente lembrará dos exuberantes anéis de Saturno, ou talvez dos mais discretos, mas ainda assim impressionantes, anéis em torno dos gigantes Júpiter, Urano e Netuno revelados em imagens capturadas no infravermelho.

Mas três pequenos corpos do Sistema Solar, através de campanhas observacionais com protagonismo de pesquisadores e instituições brasileiros, revelaram na última década inesperados sistemas anéis a sua volta. E a última dessas descobertas foi anunciada em primeira mão pelo astrônomo Felipe Braga-Ribas em uma das lives do ciclo Abril pra Astronomia, promovido pela Sociedade Astronômica do Recife (SAR) e pelo Projeto Céu Profundo: um tênue segundo anel foi detectado em torno do objeto transnetuniano (50000) Quaoar!

A jornada de descoberta de anéis em torno de pequenos corpos começa com Chariklo, um asteroide da classe dos Centauros, que teve seu anel anunciado em um trabalho de Felipe Braga-Ribas (UTFPR) e colaboradores em 2014 – seguido pelo anúncio em 2015 do anel do planeta anão Haumea, em trabalho liderado por J. L. Ortiz (Instituto de Astrofisica de Andalucía). Mais recentemente, vimos o anúncio de um primeiro anel no objeto trasnetuniano (50000) Quaoar em trabalho publicado em 2023 por Bruno Morgado (UFRJ) e colaboradores, com dados de observações realizadas entre 2018 e 2021.

Mas se a detecção de anéis em pequenos corpos do Sistema Solar já é um resultado surpreendente que evidencia o poder das técnicas observacionais e computacionais envolvidas no processo, a surpresa, o espanto e o orgulho pela ciência brasileira dobra com o anúncio da descoberta de um segundo anel em torno de Quaoar!

Em um artigo aceito para publicação no periódico Astronomy & Astrophysics Letters (já disponível no ArXiv), Chrystian Pereira (Observatório Nacional) e colaboradores anunciam que durante observações de uma ocultação estelar por Quaoar em agosto de 2022, além da confirmação do primeiro anel já observado, os dados apontaram a existência de um segundo anel envolvendo o pequeno e distante corpo.

Quem é Quaoar?

Orbitando o Sol além da órbita de Netuno, a uma distância média que é 43 vezes maior que o raio da órbita da Terra, Quaoar é um pequeno objeto de diâmetro estimado em torno de 1100 km. Seu primeiro anel, batizado de Q1R foi descoberto em observações realizadas entre 2018 e 2021.

Suas pequenas dimensões (aproximadamente um terço do diâmetro da Lua) e sua grande distância tornam impossível fazer imagens que possam resolver detalhes de sua superfície ou mesmo definir sua forma, por isso, são usados métodos indiretos – mas muito precisos – para determinar sua geometria.

Como são realizadas as observações?

Pra deixar bem claro o tamanho do desafio: visto da Terra, Quaoar tem o diâmetro aparente de uma moeda de um real a 154 km distância. Então observações diretas não são uma opção. Mas os pesquisadores envolvidos no trabalho são capazes de computar com grande precisão sua órbita e prever quando e onde é possível observar o trânsito desse objeto em frente a uma estrela, ocultando-a. Esse pequeno e breve eclipse é capaz de nos revelar detalhes da geometria do corpo eclipsante e de quebra fornecer informações sobre a presença ou não de uma atmosfera ou de sua composição.

Representação dos resultados para o formato de Quaoar (no centro) e para a detecção dos anéis Q1R (externo) e Q2R (interno). A órbita do anel Q1R combina dados das observações recentes e das realizadas entre 2018 e 2021, publicadas por Bruno Morgado e colaboradores. A elipse verde marca a posição esperada para o limite de Roche considerando partículas de densidade 0,4 g/cm3 . A existência de anéis além do limite de Roche é inesperada e a influência de efeitos de ressonância com a rotação do corpo central e com a órbita do Weywot (um pequeno satélite de Quaoar) é considerada. A seta indica o movimento da estrela ocultada em relação a Quaoar. [créditos: C.L. Pereira e colaboradores]

Mas assim como um eclipse solar total só é visível ao longo da estreita faixa sobre a superfície terrestre onde a sombra da Lua é diretamente projetada pelo Sol, a observação de ocultações estelares por planetas ou pequenos corpos do Sistema Solar também exige que os observadores estejam posicionados no lugar e na hora certos para essa desafiadora observação. Determinar estas posições e instantes com precisão é o primeiro, mas não o único, desafio para a realização destas observações.

A imagem abaixo mostra a localização de observatórios posicionados na faixa de visibilidade da ocultação. Os pontos laranja representam estações onde o céu estava nublado durante a ocultação, os pontos pretos representam as estações onde a ocultação foi observada com sucesso e o ponto vermelho marca a estação onde a observação não detectou a ocultação. A linha sólida representa o limite da sombra de Quaoar e as linhas pontilhadas delimitam o contorno dos aneis Q1R e Q2R.

Posição dos observatórios envolvidos na aquisição de dados da ocultação da estrela Gaia DR3 4098214367441486592 pelo objeto trasnetuniano Quaoar [créditos: C. L. Pereira e colaboradores]

Limites na sensibilidade dos instrumentos e meteorologia desfavorável são o grande obstáculo para uma observação que exige grande precisão e sensibilidade instrumental. Por sorte, a faixa de ocultação cobria também o arquipélago do Havaí, um dos melhores sítios para observação astronômica do hemisfério norte e lar dos observatórios Gemini Norte, de 8.1m de abertura e CFHT (Canada-France-Hawaii Telescope) de 3.6m. Estes telescópios de grande abertura e com instrumentos de grande sensibilidade foram capazes de resolver a presença do tênue segundo anel de Quaoar.

E quais os resultados?

Os telescópios apontados para a estrela Gaia DR3 4098214367441486592 esperavam ver o brilho da estrela ser atenuado pela passagem de Quaoar, da mesma forma que a passagem da Lua eclipsa o brilho do Sol em um eclipse solar.

Comparando a variação do brilho da estrela em observações realizadas em diferentes posições é possível traçar o contorno do objeto eclipsante. Mais duas breves quedas no fluxo luminoso eram esperadas antes e após a ocultação pelo corpo central, causadas pelo já conhecido anel Q1R, envolvendo Quaoar a uma distância média de 4100km. A surpresa veio de outra sutil queda de fluxo encontrada nos dados numa posição intermediária entre Quaoar e o anel Q1R.

Dados do observatório Gemini Norte no infravermelho próximo (filtro z’) mostram as variações no fluxo luminoso medido da estrela e de Quaoar. A queda profunda na parte central do gráfico corresponde ao intervalo em que Quaoar eclipsou a estrela e as pequenas reduções de fluxo observadas pouco antes e pouco depois da ocultação revelam a presença dos anéis. [créditos: C.L. Pereira e colaboradores]

Esta sutil, mas perceptível, queda no fluxo antes e depois da ocultação principal é suficiente para revelar a presença de um segundo anel, orbitando Quaoar a 2500 km de distância.

As curvas de luz obtidas com os telescópios Gemini Norte e CFHT são coerentes com a existência de um segundo anel em torno de Quaoar. [créditos: C. L. Pereira e colaboradores].
O conjunto de dados dos observatórios que realizaram com sucesso a observação da ocultação estelar por Quaoar revela também a diferença de desempenho dos grandes telescópios Gemini Norte e CFHT no monte Mauna Kea no Havaí.

A análise dos dados da observação permitem não apenas caracterizar Quaoar e seus anéis, mas abre também as portas para discutir a existência destas estruturas numa região além do limite de Roche clássico, onde se esperaria que essas partículas se aglutinassem formando um satélite. Efeitos de ressonância com o período de rotação de Quaoar e com seu pequeno satélite Weywot e a ocorrência de colisões mais elásticas entre as partículas dos anéis são fatores que podem contribuir para a existência e longevidade de anéis além do limite de Roche e o sucesso nos métodos usados em sua detecção podem significar que outros sistemas similares possam ser encontrados em futuras observações. E esperamos que mais uma vez a presença e o protagonismo brasileiro sigam fazendo a diferença.

Cadê a Fosfina?

Imagem de Vênus, com espectro sobreposto, mostrando linhas de absorção do ozônio (O3) na atmosfera da terrestre e sem indicação da presença de fosfina (PH3). – [Imagem produzida por Wandeclayt M. com dados da espaçonave Messenger, durante seu segundo sobrevoo a Vênus em junho de 2007. A imagem é uma composição colorida RGB utilizando os canais de 433.2nm, 579.9nm e 748.7n do instrumento MDIS, capturados quando a nave passava a 66 mil km do planeta].

Em 2021, o anúncio da detecção de traços do gás fosfina (PH3) na atmosfera do planeta Vênus, apontada por dados do rádio observatório ALMA (Atacama Large Millimeter/submillimeter Array), causou euforia na comunidade científica.

Antenas do radio observatório ALMA (Atacama Large Millimeter/submillimeter Array) no norte do Chile. Com dados desde observatório, um grupo publicou em 2021 a descoberta de uma abundância acima da esperada de moléculas de fosfina na atmosfera de Vênus. [imagem: ESO/B. Tafreshi]

A abundância de fosfina reportada inicialmente (20 partes por bilhão) era anormalmente alta e sua origem não poderia ser facilmente explicada por processos conhecidos. A euforia vem do fato da fosfina ser um biomarcador – uma molécula que pode estar associada ao metabolismo de seres vivos – que na Terra é formada por matéria orgânica em decomposição, e seu excesso, se confirmado, poderia significar a presença de vida na atmosfera de Vênus. Uma hipótese ousada que precisaria de dados muitos robustos para suportá-la.

O trabalho de Martin Cordiner, do Goddard Space Flight Center, e colaboradores, aceito para publicação no periódico Geophysical Research Letters.

Mas os dados robustos não vieram. Após a divulgação do resultado, uma recalibração dos dados do ALMA levou a uma estimativa muito mais modesta: de 1 a 7 partes de fosfina por bilhão. Algo muito mais condizente com processos naturais, como atividade vulcânica e outros processos que não envolvem metabolismo de seres vivos.

Cuidadosas observações realizadas em seguida, pelo recém aposentado telescópio infravermelho SOFIA – um telescópio de 2.7m de diâmetro operando embarcado em um Boeing 747 modificado da NASA – deram origem a um trabalho publicado por Martin Cordiner do Centro Espacial Goddard, e colaboradores, estabelecendo um limite superior para a abundância de fosfina venusiana: a substância não foi detectada, e caso ela esteja presente na atmosfera do planeta, não deve exceder as 0.8 partes por bilhão na faixa entre 75 e 110 km de altitude.

SOFIA (Stratospheric Observatory for Infrared Astronomy) – Um telescópio infravermelho de 2,7m de diâmetro (2,5m de diâmetro útil), aerotransportado em um Boeing 747 adaptado. Uma cooperação entre as agências espaciais dos EUA (NASA) e Alemanha (DLR).

Durante sua vida útil, o observatório SOFIA operou em uma condição privilegiada: voando entre 38000 e 44000 pés de altitude, seu telescópio se colocava acima de 99% da atmosfera terrestre e de seus efeitos na absorção da reveladora radiação infravermelha. Sua mobilidade também era uma grande vantagem, permitindo observar eventos transientes como eclipses e trânsitos de objetos do Sistema Solar, mesmo quando esses só fossem visíveis sobre o oceano ou outras regiões onde não há observatórios.

Os dados do SOFIA vão na direção do que muitos esperavam e reforça a ideia de que o resultado publicado em 2021 foi fruto de dados mal calibrados. Este é um processo comum na ciência: um trabalho pode chegar em conclusões incorretas por falhas em seus métodos ou em seu conjunto de dados, mas análises e novas observações posteriores podem mostrar essas inconsistências e corrigir esses resultados.

Lua: Mares, oceanos e baías numa superfície desértica.

A face visível da Lua é marcada por vastas planícies escuras que contrastam com o terreno mais claro e mais acidentado do restante da superfície lunar. Apesar de não haver água no estado líquido na superfície da Lua, essas regiões recebem o nome de oceanos, mares, lagos e baías.

O mares lunares são na verdade um deserto seco e correspondem a regiões inundadas pelo basalto originado na atividade vulcânica lunar (https://doi.org/10.1029/2000JE001244) no período compreendido entre 4 e 1,1 bilhões de anos atrás(aqui é bom lembrar que no português brasileiro 1 bilhão equivale a 1.000.000.000).

A face visível da Lua (imagem da esquerda) e seu lado oculto (à direita) em mosaico composto por imagens da Lunar Reconnaissance Orbiter [crédito: NASA]

Por se tratar de regiões mais jovens do terreno, os mares exibem menos crateras de impacto que as regiões mais antigas e elevadas. Além disso, os mares possuem albedo mais baixo, refletindo menos luz e parecendo mais escuros, destacando-se – mesmo a olho nu – contra o terreno mais claro.

Os primeiros mapas a nomear acidentes do relevo lunar datam do século XVII e já registravam as planícies basálticas como mares e oceanos. Os mapas de Langrenus (1645), Hevelius (1647) e Riccioli (1651) traziam denominações distintas para os mares e para as demais formações da topografia da Lua. O sistema adotado por Riccioli é o que mais se aproxima da nomenclatura moderna, padronizada pela União Astronômica Internacional a partir da aprovação do mapa e catálogo Named Lunar Formations compilado por Mary Blagg e Karl Müller e publicado em 1935.

Mapa da Lua publicado em 1645 por Michael von Langren, o primeiro a atribuir nomes a formações da topografia lunar.
Mapa da Lua de Johanes Hevelius, publicado em 1647 na obra Selenographia.
Mapa lunar desenhado por Grimaldi e publicado por Giovanni Battista Riccioli no Almagestum Novum em 1651 [ETH-Bibliothek Zürich ]

O atlas de Blagg e Müller foi um primeiro passo na universalização da nomenclatura lunar, mas o aumento da resolução das fotografias lunares capturadas em telescópios terrestres e o mapeamento do lado oculto da Lua por espaçonaves exigiu sucessivas atualizaçoes nos mapas lunares nas décadas seguintes. Um curioso episódio seguiu o envio das primeiras imagens da face oculta da Lua pela sonda soviética Luna 3. Os cientistas soviéticos batizaram uma das raras planícies basálticas naquele lado da Lua de Mare Moscoviense, quebrando a tradição de nomear mares com nomes relacionados a àgua (Mar das Chuvas, Oceano das Tempestades…) ou a estados de espírito (Mar da Tranquilidade, Mar da Serenidade…) para o desconforto dos mais apegados à nomenclatura histórica.

A Assembleia Geral da União Astronômica Internacional (IAU General Assembly) de 1961 estabeleceu que além das regras em voga, ficasse estabelecido que: “Grandes áreas escuras são designadas por denominações em latim referentes a estados de espírito. Estes nomes são associados, de acordo com as regras de declinação e grafia do latim, aos substantivos apropriados: Oceanus, Mare, Lacus, Palus or Sinus. (As exceções Mare Humboldianum e Mare Smythii são mantidas, por estarem consagradas pelo uso). “

“Large dark areas are designated in Latin denominations calling up psychic states of minds. These names are associated, according to the Latin declination ruIes and spelling, to one of the appropriate substantives: Oceanus, Mare, Lacus, Palus or Sinus. (The exceptions, Mare Humboldianum and Mare Smythii, are preserved, due to long usage).” [XIth General Assembly. Berkeley, USA 1961]

A solução para o impasse soviético veio daí! Reza a lenda que o astrônomo Aldouin Dollfus, muito diplomaticamente, estabeleceu que o nome Mare Moscoviense estava de acordo com a regra, porque Moscou é um “estado de espírito”.

Mapa topográfico da Lua criado a partir de dados da sonda chinesa Chang-E1.

Cometa Leonard, onde está você?

Poluição luminosa, pouca elevação acima do horizonte, nuvens, poluição atmosférica e pouco brilho. Esse quinteto sinistro está sendo muito competente para dificultar a observação do esperado cometa C/2021 A1 (Leonard) nesta última quinzena de 2021. Em quase todo o Brasil, observadores reportam dificuldades para encontrar, observar e registrar em imagens o cometa mais brilhante do ano. Mas a insistência pode ser recompensadora. Uma breve trégua entre as nuvens, um pouco de habilidade e conhecimento do céu e alguma dose de sorte podem resultar em boas experiências para os que observam com binóculos e pequenos telescópios e para os perseverantes astrofotógrafos ávidos pela captura de uma visão do astro nebuloso.

Cometa Leonard se pondo em meio ao brilho do céu produzido pela poluição luminosa da cidade de Jacareí (SP), localizada por trás dos morros no horizonte, em 23/12/2021. [Wandeclayt M./Céu Profundo]

Nossas primeiras imagens do Leonard foram capturadas através de telescópios remotos, no hemisfério norte, entre outubro e o início de dezembro, mas a grande expectativa era por poder observá-lo através da ocular e por capturar imagens localmente, com a mão na massa nas câmeras e telescópios. Muito planejamento, equipamentos a postos e uma espera que pode se tornar angustiante são os ingredientes da busca pelo cometa.

Em nossa fase de planejamento, criamos um software que plota o deslocamento do cometa dentro de um período, baseado nos dados de posição disponíveis na central de efemérides de corpos do Sistema Solar do Laboratório de Propulsão a Jato da NASA. Entre os dias 20 e 30/12, o cometa segue a trajetória plotada em azul no diagrama abaixo, cruzando a constelação do Microscópio.

Diagrama de localização do Cometa Leonard no período de 20 a 30/12/2021. Vênus e o Sol estão representados no mesmo período para referência. [Céu Profundo]

Muitas vezes, apenas uma análise posterior dos dados revela a presença do objeto esperado. Sem binóculos ou telescópios e apenas munidos de câmera, objetiva de 85mm e montagem motorizada, fizemos imagens do céu de Alcântara (MA) ainda sob a luz do crepúsculo na sexta 17/12, pouco antes das nuvens obstruírem completamente a visão sob o horizonte oeste. Apesar do aparente insucesso, a imagem ampliada revela a presença do Leonard!

A Linha que Separa a Insistência da Teimosia.

Nos dias seguintes a meteorologia seguiu inclemente, mas, entre as nuvens, o observamos através de um telescópio newtoniano de 200mm f/6, com ocular de 26mm, na terça-feira (21/12). Em nossa primeira observação telescópica a impressão foi de que o amarelo da cauda de poeira predominava e pouco percebemos do esverdeado da coma. Nas imagens desse dia, problemas de alinhamento e vibração na montagem motorizada EQ-5 arruinaram todas as imagens capturadas quando o Leonard ainda se encontrava numa posição mais alta no céu, as primeiras imagens aproveitáveis só vieram quando ele se aproximava do horizonte, em frames com exposição entre 20s e 30s com objetiva de 300mm foi possível revelar o belo, porém tímido, visitante interplanetário.

O cometa C/2021 A1 (Leonard) no dia 20/12/2021, em imagens capturadas com o cometa já baixo no horizonte. [Wandeclayt M./Céu Profundo].

Neste dia não conseguimos percebê-lo a olho nu, apesar de ser razoavelmente fácil identificá-lo na buscadora do telescópio e nas imagens de grande campo. Observadores em sítios completamente escuros, afastados da poluição luminosa das áreas urbanas podem ter sido mais felizes nesse aspecto, e aqui deixamos nossa recomendação: conheça os problemas causados pela poluição luminosa – que não se restringem à observação do céu – e as suas soluções. A rede Céus Estrelados do Brasil é um excelente ponto de partida para quem quer entender o problema.

A Apoteose!

Mas a grande recompensa para a nossa teimosia chegou! Na noite de 23/12 um surto de brilho, aliado a uma posição bem mais favorável para a observação, com o cometa mais alto em relação ao horizonte, nos trouxe o que tanto esperávamos: observamos o Leonard a olho nu! E conseguimos imagens que revelam filamentos da cauda de íons em meio a cauda de poeira e exibem uma região central muito brilhante, envolvida pelo verde característico da cabeleira. Um presente de Natal antecipado para olhos sedentos por uma visão do cometa do ano!

Glossário

  • Coma (ou Cabeleira) – É o envoltório de gás que circula o núcleo. Pode medir dezenas de milhares de quilômetros de diâmetro.
  • Periélio – É o ponto da órbita mais próximo do Sol. O cometa Leonard atingirá o periélio em 03/01/2022.
  • Montagem Motorizada – Para fazer imagens de longa exposição, astrofotógrafos utilizam aparatos que compensam a rotação da Terra, mantendo a câmera e o telescópios apontados para o mesmo objeto.
  • Telescópio Newtoniano – É o tipo mais comum de telescópio refletor. Em vez de lentes, sua objetiva é um espelho côncavo.

Seguindo o cometa C/2021 A1 (Leonard)

O cometa C/2021 A1 (Leonard) atinge o periélio – o ponto de sua órbita mais próximo ao Sol – no dia 3 de Janeiro de 2022, e ao se aproximar deste ponto, o cometa – assim como qualquer objeto se deslocando em órbita ao redor do Sol – move-se mais rapidamente.

Esta é uma das características do movimento orbital descrita pelas leis de Kepler (1571-1630) e posteriormente explicadas pela teoria gravitacional de Isaac Newton (1643-1727). Isto significa que objetos em órbitas circulares se movem uniformemente, mas objetos em órbitas alongadas se movem muito mais rapidamente nas proximidades do Sol do que quando estão afastados. É por isso que a posição de cometa no céu, quando ele adentra as regiões mais centrais do Sistema Solar, muda tão rapidamente e esse deslocamento pode ser percebido mesmo em alguns minutos de observação, principalmente quando registrado em imagens.

Criamos a carta celeste indicando o deslocamento do cometa Leonard num período de um mês antecedendo o periélio e plotamos também as posições do Sol e de Vênus durante este período. Use esta carta como uma referência rápida para planejar suas observações.

Cometa Leonard na manhã de 30/12/2021 imageado por nossa equipe, utilizando telescópio remoto no Novo México (EUA). [Wandeclayt M./Céu Profundo]

Mas se a ideia é apontar seu telescópio com precisão para fotografar o cometa com câmeras CCD de campo estreito, você pode gerar uma tabela de efemérides usando o serviço Horizons do JPL (Jet Propulsion Laboratory) no endereço: https://ssd.jpl.nasa.gov/horizons/app.html#/

Outra opção é utilizar o software de simulação e visualização Stellarium. Pra acrescentar o cometa Leonard ao banco de objetos do Stellarium, utilize o nosso tutorial em vídeo:

Cometa Leonard já está visível em céus brasileiros: como localizá-lo no Stellarium Web

O Cometa C/2021 A1 (Leonard) já pode ser visto logo antes do nascer do Sol nos céus das regiões Norte e Nordeste do Brasil!

Nesse post, mostramos como utilizar o Stellarium Web (versão para navegador do simulador de céu Stellarium: https://stellarium-web.org/) para descobrir o melhor horário para observar o cometa da sua cidade.

Ao entrar no site, caso o Stellarium Web não encontre sua localização automaticamente, clique no botão inferior esquerdo para definir sua região no mapa. O botão da direita inferior abre os controles de data e horário.

Na madrugada de 06/12/2021, o cometa Leonard aparecerá no horizonte leste pouco antes do nascer do Sol, próximo à estrela Arcturus (é uma estrela bastante brilhante que você pode utilizar para se localizar no Stellarium e no céu).

Cometa Leonard no Stellarium Web: https://stellarium-web.org/skysource/Arcturus?fov=37.208&date=2021-12-06T07:10:07Z&lat=-10.18&lng=-48.33&elev=0

Assim que encontrá-lo, você pode selecionar o cometa com o mouse. O Stellarium Web abrirá uma janela à esquerda com as informações sobre visibilidade:

  • Magnitude: É o brilho aparente do cometa. Quanto menor o número, mais brilhante ele aparece no céu. Magnitude 6 é o limite de visão do olho humano em lugares livres de poluição luminosa.
  • Distance: Distância do cometa Leonard até a Terra em unidades astronômicas (1 AU é a distância média do Sol até a Terra).
  • Visibility: Período que o cometa permanece acima do horizonte da sua localização. Rise é a hora em que ele nasce no horizonte leste, e Set é a hora que ele se põe no horizonte oeste.

Quer saber mais sobre o Leonard e outros cometas? No dia 07/12/2021, terça-feira, às 20h estaremos ao vivo com o dr. Pedro Bernardinelli, descobridor do cometa gigante C/2014 UN271 (Bernardinelli-Bernstein) falando sobre esses objetos vindos dos confins do Sistema Solar! Ativa o lembrete: https://www.youtube.com/watch?v=UvXhNCFXw_c

Veja também:

Cometa Leonard chega aos céus brasileiros

O brilho do aguardado cometa C/2021 A1 (Leonard) segue escalando, nos levando a crer que ele de fato vai entregar todo o espetáculo que vem prometendo para a última quinzena de 2021.

Cometa C/2021 A1 (Leonard) fotografado em Alcântara (MA) na madrugada de 2 de dezembro de 2021 na direção da constalação de Canes Venatici. O aglomerado globular M3 também aparece no campo.
(Wandeclayt M./@ceuprofundo)

Na madrugada de 2 de dezembro capturamos o que pode ser a primeira imagem do Leonard feita em solo brasileiro. O cometa aparece na direção da constelação de Canes Venatici (Cães de Caça) e foi registrado com câmera DSLR numa montagem motorizada Star Adventurer 2i numa exposição de 10s, ISO 800 com objetiva 85mm f/1.5 em uma rara brecha entre as nuvens em Alcântara, no Maranhão.

E dá pra confiar?

Cometas se comportam de maneira surpreendente e imprevisível. Podem sofrer aumentos abruptos de brilho ou podem se fragmentar e desaparecer rapidamente. Mas o Leonard tem se mantido bem comportado. A sequência de imagens abaixo (capturadas pela nossa equipe utilizando telescópios remotos em 8 de novembro e 1º de dezembro) mostra a clara evolução do Leonard, com o desenvolvimento da cauda e da cabeleira e o nítido aumento de brilho. As imagens foram realizadas com o mesmo instrumento e representam o mesmo campo do céu.

Cometa Leonard em 08/11/2021, observado com telescópio remoto de 43 cm [Wandeclayt M./@ceuprofundo]
Cometa Leonard em 01/12/2021, observado com telescópio remoto de 43 cm [Wandeclayt M./@ceuprofundo]

Ao contrário do cometa C/2020 F3 NEOWISE, que em julho de 2020 privilegiou observadores no hemisfério norte, o cometa Leonard se aproxima de seu periélio no dia 3 de janeiro de 2022 em uma trajetória que favorece observadores ao sul da linha do equador. Além disso a posição relativa entre a Terra, o cometa e o Sol potencializa o efeito de espalhamento da luz solar na cauda de poeira podendo torná-lo ainda mais brilhante, a depender da quantidade de poeira liberada pelo núcleo.

Vale lembrar que o cometa é essencialmente uma grande massa de gelo sujo e que a sublimação desse gelo (a passagem direta do estado sólido para o gasoso) forma a cabeleira e a cauda características dos cometas. A presença de gás ionizado e poeira dá origem a duas caudas distintas: a cauda iônica, com brilho verde azulado, e a cauda de poeira, que nos parece amarelada, refletindo e espalhando a luz do Sol. As caudas são sopradas pelo Sol e por isso apontam sempre na direção oposta à nossa estrela. Ao se afastar do Sol a cauda segue à frente do cometa.

O brilho que observamos tem então duas componentes principais: luz emitida pelo plasma (gás ionizado) e luz refletida pela poeira. A luz refletida pela superfície do núcleo conta pouco, já que o núcleo mede apenas alguns quilômetros, enquanto a cabeleira (coma) mede dezenas de milhares de quilômetros mas podendo atingir diâmetros comparáveis ao do Sol (mais de 1 milhão de quilômetros).

Os dados de fotometria mais recentes indicam que o cometa Leonard está no limiar da visibilidade a olho nu, com magnitude estimada em 6.3 em observação realizada no Observatório Mount Lemmon (por Kacper Wierzchos) e seguindo a tendência apontada por outros observadores, de acordo com os dados publicados no portal COBS [https://cobs.si/analysis]

E quando vamos poder vê-lo?

O brilho do cometa não é a única variável importante aqui. Sua elevação acima do horizonte afeta nossa percepção, e A POLUIÇÃO LUMINOSA é outro grande inimigo da observação de objetos astronômicos de brilho tênue como os cometas. Quando dizemos que podemos observar objetos com magnitude mais brilhante que 6, estamos falando de observadores em céus escuros, longe do excesso de iluminação dos centros urbanos e observando em um ambiente onde a iluminação local não interfira na adaptação visual. Então, mesmo que você se desloque para uma área rural, nada de observar sob postes, ou nas proximidades de refletores e holofotes que possam ser vistos diretamente. Também evite olhar para telas de dispositivos eletrônicos. Nestas condições ideais – sem poluição luminosa e com a vista adaptada ao escuro – não apenas a experiência de observação do cometa é potencializada, mas também muitos objetos de céu profundo como nebulosas, galáxias e aglomerados estelares se tornam visíveis a olho nu.

Na primeira semana de dezembro o cometa segue baixo no horizonte leste ao nascer do Sol, podendo ser fotografado ou observado com pequenos instrumentos, mas ainda não a olho nu. Para observá-lo com seus próprios olhos, recomendamos que a partir do dia 17 de dezembro, 1 hora após o pôr do Sol, o cometa seja procurado sobre o horizonte oeste. Binóculos são o instrumento ideal para essa observação, permitindo a observação de um grande campo e não apenas de uma pequena região ao redor do cometa.

Em nossas redes sociais temos atualizações diárias da posição e brilho do C/2021 A1 Leonard e mapas e dicas de observação. Então se ainda não nos segue, corre lá pra não perder nenhum detalhe da visita do Leonard ao nosso cantinho no Sistema Solar:

Twitter: www.twitter.com/ceuprofundo

Instagram: www.instagram.com/ceuprofundo

Youtube: www.youtube.com/ceuprofundo

Cometa C/2021 A1 (Leonard) – Você vê primeiro aqui!

C/2021 A1 Leonard

Primeiro uma GRANDE ADVERTÊNCIA: cometas podem contradizer completamente as previsões. Podem se fragmentar, podem sublimar numa taxa diferente da esperada, podem conter mais ou menos poeira… e tudo isso influi no brilho que observamos aqui da Terra, então é sempre bom conservar certa cautela quanto às previsões mais otimistas de observabilidade do cometa.

Cometa Leonard imageado pela equipe do projeto Céu Profundo em 08 de novembro de 2021, através de telescópio remoto no Novo México (EUA).

Como sua designação C/2021 A1 revela, o cometa Leonard foi o primeiro cometa descoberto na primeira quinzena do ano de 2021, e ao longo de todo ano – seguindo sua jornada desde os confins do Sistema Solar – ele tem apresentado um bom comportamento, alimentando as esperanças de que, quase um ano após a sua descoberta, ele se torne visível a olho nu. E melhor ainda: privilegiando observadores no hemisfério sul, que perderam a melhor parte do espetáculo do cometa NEOWISE em 2020.

O deslocamento do cometa Leonard em relação às estrelas do fundo registrado em imagens capturadas com um intervalo de 25 minutos no dia 28/11 [Wandeclayt M./Céu Profundo]

Temos acompanhado a evolução do C/2021 A1 desde outubro através de telescópios remotos no observatório New Mexico Skies e estamos felizes com o comportamento do astro visitante! Cabeleira e cauda já se mostram evidentes e a curva de luz construída a partir da magnitude reportada pelos observadores da Comet Observation Database mostra que o seu brilho segue prometendo um espetáculo nas semanas anteriores ao periélio.

Curva de Luz do cometa C/2021 A1 (Leonard) a partir de dados de observação até o dia 28/11 (https://cobs.si/analysis). O eixo horizontal indica a data, enquanto o eixo vertical indica o brilho aparente do cometa (quanto mais alto o ponto no gráfico, maior o brilho). A curva laranja é uma projeção da evolução do brilho do cometa a partir das observações já realizadas.

QUANDO OBSERVAR?

Com magnitude abaixo de 10, Leonard já é um alvo ao alcance de telescópios amadores de médio porte desde o início de novembro, mas o grande espetáculo, caso as previsões se confirmem, fica para a última quinzena de dezembro, pouco antes do cometa atingir o periélio em 3 de janeiro.

O diagrama abaixo mostra a trajetória hiberbólica do cometa Leonard conforme computada pelo NASA Jet Propulsion Laboratory (JPL), no qual podemos ver a grande inclinação de sua órbita (mais de 132º em relação à eclíptica – o plano da órbita terrestre). O cometa se aproxima do plano orbital da Terra pelo norte, mas atinge o periélio ao sul da eclíptica, favorecendo a observação a partir do Hemisfério Sul!

Imagem em cores mostrando a posição do Sol, Mercúrio, Vênus, Terra, Marte e cometa Leonard no espaço, como se estivéssemos vendo o Sistema Solar de fora. Há círculos mostrando as órbitas dos planetas, todos aproximadamente no mesmo plano. A órbita do cometa Leonard forma uma hipérbole bastante inclinada para cima em relação às órbitas dos planetas.
Visualização da órbita do cometa C/2021 A1 (Leonard) com sua posição no dia 19/12/2021. [https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=2021A1&view=VOPC]

Vários fatores se combinam para determinar quando teremos a melhor visão do Leonard: a quantidade de poeira e gás liberados pela sublimação do núcleo que formarão a cabeleira e a cauda quando ele se aproximar do Sol, a distância do cometa à Terra e ao Sol, e a elevação do cometa acima do horizonte após o pôr do Sol. Mais poeira significa que mais luz do Sol pode ser refletida e espalhada. Mais gás também significa que teremos cabelera e cauda iônica mais exuberantes. E tudo isso precisa ficar acima do horizonte após o anoitecer. Somando tudo isso, a segunda quinzena de dezembro é o período de ouro para buscarmos o Leonard em nossos céus.

E COMO ENCONTRAR?

Para os mais familiarizados com as cartas celestes, o diagrama abaixo, disponibilizado pelo site in-the-sky.org, é o guia perfeito para localizar e observar o grande (assim esperamos) cometa de 2021. Visite o site e baixe outras opções de visualização da carta de localização.

Mapa celeste em cores. Mostra o mapa das constelações do céu e a trajetória do cometa Leonard entre as constelações.
Mapa de localização do cometa C/2021 A1 (Leonard). [Domic Ford / https://in-the-sky.org/findercharts2.php?type=2&id0=P2&id1=A2&id2=CK21A010 ]

Mas você não precisa ser versado na leitura do céu para encontrar o astro mais esperado do ano. Na segunda quizena de dezembro, durante seu período de maior brilho, o cometa Leonard estará posicionado nas mesma região do céu em que encontraremos os planetas mais brilhantes que podemservir de referência para os observadores menos experientes.
Confira nas imagens abaixo o diagrama que corresponda à cidade mais próxima de sua latitude. Os diagramas mostram a conjunção entre o cometa Leonard e o planeta Vênus, no entardecer do dia 18/12 quando já se espera que o objeto seja visível a olho nu. Mas lembre-se: o cometa seguirá brilhante até o fim de dezembro e publicaremos novos mapas com mais datas e localidades, por isso não deixe de conferir o site nem de nos seguir nas redes sociais: www.twitter.com/ceuprofundo e www.instagram.com/ceuprofundo para dicas de última hora. Nos acompanhe também no www.youtube.com/ceuprofundo onde damos dicas de observação e de utilização de softwares como o Stellarium, que utilizamos aqui para gerar os mapas de visualização.

Porto Alegre

Curitiba

São Paulo

Brasília

Recife

Fortaleza

Manaus

São Luis

Eclipse lunar de 19 de novembro de 2021

Em 19 de novembro de 2021 teremos o eclipse lunar parcial mais longo em quase 600 anos, mas infelizmente ele será pouco visível no Brasil.

Um eclipse lunar ocorre quando a Lua atravessa a sombra projetada pela Terra no espaço. A sombra é dividida em duas regiões: penumbra (borda menos escura da sombra) e umbra (região mais escura e central).

https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Eclipse_lunar.svg/640px-Eclipse_lunar.svg.png
Esquema mostrando as regiões da sombra projetada pela Terra.
Fonte: https://pt.wikipedia.org/wiki/Ficheiro:Eclipse_lunar.svg

Por conta disso os = eclipses lunares são classificados em penumbral (quando a Lua atravessa a penumbra – posição 2 no desenho abaixo), parcial (quando parte da Lua atravessa a umbra – posição 3) e total (quando toda a Lua atravessa a umbra – posição 4).

https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Passagem_nodo_descendente.svg/640px-Passagem_nodo_descendente.svg.png
Tipos de eclipse lunar. Fonte: https://commons.wikimedia.org/wiki/File:Passagem_nodo_descendente.svg

No dia 19, parte da Lua atravessará a penumbra e, em seguida, a umbra. Portanto, teremos uma fase penumbral, que praticamente não dá pra notar a olho nu, e em seguida um eclipse parcial.

Apesar de ser o mais longo eclipse parcial lunar em séculos a maior parte do Brasil acompanhará apenas o início do eclipse, já que a Lua já vai ter se posto no horizonte quando o fenômeno atingir seu ponto máximo.

Mapa da visibilidade do eclipse: quanto mais escura a região, melhor a visibilidade. A maior parte do Brasil verá apenas parte do eclipse parcial.

A fase penumbral será visível em praticamente todo o Brasil (ou pelo menos onde as condições climáticas forem favoráveis), começando às 3:02 da manhã (horário de Brasília), quando a Lua começa a adentrar a região da penumbra.

Esta etapa do eclipse é bastante sutil, observadores mais acostumados podem perceber a Lua um pouco escurecida em relação à Lua Cheia comum. A imagem abaixo mostra uma comparação entre a Lua Cheia antes do eclipse (esquerda) e durante um eclipse penumbral (direita).

Comparação entre a Lua cheia antes do eclipse (esquerda) e durante um eclipse penumbral (direita).
Crédito: Fred Spenak https://www.mreclipse.com/

Às 4:18 (horário de Brasília) a Lua começa a entrar na região da umbra, dando início ao eclipse parcial, visível de praticamente todo o território brasileiro. O ponto máximo acontece às 6:02 e será visível em regiões do Norte e Centro-Oeste do Brasil, e ainda estará acontecendo quando a Lua desaparecer no horizonte oeste.

Selecionamos algumas capitais localizadas em diversas longitudes para mostrar a visibilidade do eclipse pelo país. Para verificar horários, visibilidade e aspecto do eclipse em sua localização digite o nome da sua cidade no campo “Eclipse lookup” da página dedicada ao eclipse no site Time and Date: https://www.timeanddate.com/eclipse/lunar/2021-november-19.

Visibilidade do eclipse lunar parcial em algumas cidades brasileiras.

Não desanime e marque na agenda!

Em 15 de maio de 2022 haverá um eclipse total da Lua, e o Brasil INTEIRO está na melhor posição de visibilidade do evento!

Visibilidade do eclipse lunar total de 15 de maio de 2022. Quanto mais escura a área, maior a visibilidade do eclipse. Fonte: https://www.timeanddate.com/eclipse/map/2022-may-16?n=550

Boa observação a todos!

Urano, uma coleção de surpresas!

Urano pelo telescópio espacial Hubble [crédito: NASA, ESA, e A. Simon (NASA Goddard Space Flight Center), e M. Wong and A. Hsu (University of California, Berkeley)]

Quando William Herschel descobriu Urano com seu telescópio refletor de 6 polegadas em 1781 não estava apenas fazendo a primeira descoberta de um planeta na era dos telescópios, estava revelando uma nova família de objetos em nosso sistema solar.
Urano e seu vizinho Netuno (descoberto em 1646 a partir do estudo de anomalias na trajetória orbital de Urano) possuem diâmetro aproximadamente 4 vezes maior que o da Terra e não se aproximam do gigantismo de seus primos Júpiter (11,2 diâmetros terrestres) e Saturno (9,45 diâmetros terrestres).
Compostos por núcleos rochosos muito densos e com aproximadamente o tamanho da Terra, girando com período de aproximadamente 17h (Urano) e 16h (Netuno), ambos os planetas possuem atmosferas ricas em hidrogênio molecular e campos magnéticos com polos muito desalinhados com relação ao eixo de rotação.

Mas Urano continuou se revelando surpreendente ainda no século XX. Em 1977, durante as observações da ocultação de uma estrela pelo planeta, percebeu-se que 40 minutos antes e 40 minutos após a ocultação, o brilho da estrela sofreu uma série de variações consistentes com a presença de um sistema de anéis em volta do planeta. Até então, apenas os anéis de Saturno eram conhecidos. Em 1979, anéis também seriam observados em Júpiter pela sonda Voyager 1 e em 1989 a Voyager 2 confirmaria a existência de anéis também em Netuno.

Imagem a partir de dados obtidos no infravermelho no comprimento de 1.6 µm pelo telescópio espacial Hubble. Os anéis aparecem evidenciados. [Créditos: NASA/ESA/Hubble. Processamento: Wandeclayt M./Céu Profundo ]

Apesar de seu tênue sistema de anéis não ser detectável diretamente em observações em luz visível por telescópios terrestres, é possível visualizá-los quando observamos no infravermelho.

Outra peculiaridade Uraniana é a inclinação de seu eixo de rotação! O planeta está “deitado” em seu plano orbital. A inclinação de seu eixo é de 98º em relação ao plano da órbita. Esta inclinação causa em Urano as mais extremas estações do Sistema Solar. Durante seu período de translação de aproximadamente 84 anos terrestres, cada estação dura 21 anos. Nos solstícios, o eixo de Urano aponta diretamente para o Sol e um observador situado no polo do hemisfério onde é verão veria o Sol sobre sua cabeça durante todo o dia!