Planetário Virtual Céu Profundo: Relógios Celestes

O equinócio de Outono se aproxima! Vamos nos despedir do Verão no sábado 20/03 às 06:37 no horário de Brasília.

Nesta data, os raios solares iluminarão igualmente os hemisférios sul e norte da Terra e um observador situado sobre a linha do equador verá o Sol passando sobre sua cabeça ao meio dia local e neste instante uma haste vertical não projetará sombra.

Um ano de observações pelo satélite geoestacionário EUMETSAT mostram como se sucedem as as estações e como varia a iluminação em cada hemisfério ao longo do ano.

Para os observadores nas demais localidades do planeta, a menor sombra produzida por uma haste vertical neste dia (aquela produzida pelo Sol ao meio dia local) formará com a haste um triângulo que tem um dos ângulos equivalente à latitude local!

O satélite norte americano DSCOVR (Deep Space Climate Observatory) está posicionado no ponto lagrangeano L1, este é um dos pontos de equilíbrio entre as atrações gravitacionais da Terra e do Sol e nesta posição uma espaçonave se mantém fixa na linha que une a Terra ao Sol, ou seja, sua visão coincide com o ponto de vista do Sol!
O DSCOVR enxerga sempre a porção iluminada da Terra e ao longo do ano é possível perceber em suas imagens como varia a iluminação sobre os hemisférios Norte e Sul, produzindo as estações.

No equinócio de 20 de março de 2020, os dois hemisférios aparecem igualmente iluminados nesta imagem da câmera EPIC do satélite DSCOVR. [NASA/NOAA/USAF.]
Em 20 de junho de 2020, o Hemisfério Norte recebe mais luz que o Hemisfério Sul. Estamos no solstício de iverno do hemisfério sul e no solstício de verão do hemisfério norte. O Polo Norte é visível na imagem. [NASA/NOAA/USAF]
Em 22 de setembro de 2020, os dois hemisférios estão novamente igualmente iluminados. É equinócio de primavera no Hemisfério Sul e equinócio de outono no Hemisfério Norte. [NASA/NOAA/USAF]
Em 21 de dezembro de 2020 o Sol banha intensamente o Hemisfério Sul. É o nosso solstício de verão. No Hemisfério Norte, começa o inverno. O Polo Sul é visível na imagem. [NASA/NOAA/USAF]

Ficou confuso? Achou difícil visualizar? Calma! Seus problemas acabaram! Vamos ilustrar tudo isso e muito mais na sessão do Planetário Virtual Céu Profundo/Museu Interativo de Ciências nesta terça (16/03) às 20h em nosso canal no Youtube e na página do Facebook do Museu Interativo de Ciências (MIC) de São José dos Campos.

Vamos mostrar também como o céu e suas regularidades definiram nosso calendário e nosso relógio e como você também pode, através de observações, encontrar estas regularidades! Aproveite pra seguir e ativar as notificações pra não perder as próximas sessões!

Os primeiros passos da Perseverance

Rastros das rodas do jipe robô Perseverance após sua primeira movimentação na superfície de Marte [NASA/JPL-Caltech/University of Arizona]

Após o celebrado pouso na cratera Jezero, acompanhado por milhões de pessoas em todo o mundo, no dia 18/02, o jipe robô Perseverance dá os primeiros passos no terreno de Marte. As primeiras semanas após o pouso foram dedicadas a uma rotina de testes e diagnósticos de câmeras e outros sistemas e não incluíam testes de deslocamento do robô.

A primeira movimentação aconteceu no dia 04/03 e é apenas o primeiro passo na longa jornada de exploração que a Perseverance realizará durante sua missão. Em busca de traços da existência de vida primitiva microbiológica o robô desbravará o delta de um rio seco que um dia desaguou na cratera Jezero. O local exato do pouso, selecionado por um sistema autônomo de navegação que avaliava os riscos apresentados pelo relevo do terreno levou a Perseverance em segurança numa região pouco acidentada do solo. Mas a partir daqui sua tarefa exige um verdadeiro enduro para vencer dunas, encostas e terrenos pedregosos até atingir o Vale Neretva em busca de seus objetivos científicos.

A imagem acima, capturada pela câmera HiRISE, a bordo da espaçonave Mars Reconnaissance Orbiter, mostra duas rotas possíveis, em violeta e azul, para o deslocamento da Perseverance a partir do ponto do pouso (ponto branco, na imagem) até o um possível caminho (em amarelo) onde o robô estudará os sedimentos na região do delta.

Os futuros passos em Marte

Ilustração de modelo conceitual do Mars Ascent Vehicle, que enviará amostras do solo de Marte para um veículo em órbita. [NASA/JPL-Caltech]

Além dos objetivos de astrobiologia, a Perseverance também tem como missão caracterizar a geologia e o clima primitivo marciano e coletar amostras do solo para posterior envio à Terra. A campanha de recuperação das amostras já tem nome: MSR (Mars Sample Return) e envolverá as agências espaciais norte-americana e europeia, NASA e ESA, para uma complexa missão que envolverá veículos em órbita e na superfície de Marte. Na superfície, a missão Sample Retrieval Lander liberará um jipe robô (Sample Fetch Rover) para recuperar as amostras coletadas pela Perseverance e enviá-las através do Mars Ascent Vehicle (MAV) para a componente orbital da campanha. O orbitador será o responsável pelo trajeto final das amostras, de Marte para a Terra. O primeiro contrato para fornecimento de propulsores e sistemas de apoio para o MAV foi assinado com a empresa Northrop Grumman e entrou em vigor no dia 04/03. Trazer um pedaço de Marte para a Terra já é uma realidade!

Surpreenda-se com essas 5 Mensagens Ocultas na Perseverance

Além de seu avançado arsenal científico e das mais poderosas câmeras já embarcadas numa missão espacial, o jipe robô Perseverance chegou no dia 18/02 à superfície marciana levando também uma série de detalhes curiosos e bem humorados incorporados à nave pelos projetistas da missão. Acompanhe conosco alguns desses intrigantes detalhes!

1. Ousadia e alegria!

Ousadia e alegria não é exatamente a mensagem cifrada em código binário no paraquedas usado na entrada da Perseverance na atmosfera marciana, mas a ideia é a mais ou menos a mesma.
Na verdade aos gomos claros e escuros no paraquedas podem ser interpretados como zeros e uns, formando um código binário que pode ser transcrito (convertendo números em posições do alfabeto) como “DARE MIGHTY THINGS” (Ouse coisas grandiosas). Esse é o lema do Jet Propulsion Laboratory (JPL) que fabricou e o opera a sonda robô. A expressão é trecho de um discurso de Theodore Roosevelt:

“Far better is it to dare mighty things, to win glorious triumphs, even though checkered by failure … than to rank with those poor spirits who neither enjoy nor suffer much, because they live in a gray twilight that knows not victory nor defeat.”

(É muito melhor ousar coisas grandiosas, para atingir gloriosos triunfos, mesmo que ameaçados pelo fracasso… que se unir às pobres almas que nem se alegram nem sofrem demais, porque vivem num crepúsculo cinzento que não conhece nem a vitória nem a derrota.)

Além do slogan, o anel externo traz as coordenadas do próprio JPL, em Pasadena, na California (EUA): N 24 11 58, W 118 10 31.

2. Retrato de família

[NASA/JPL-Caltech]
Placa estampada com toda a família de jipes robôs na superfície de Marte [NASA/JPL-Caltech]

No deck superior da Perseverance, uma placa metálica traz estampada toda a família de jipes robôs enviada a Marte desde a pequena pioneira Sojourner, que iniciou a era da exploração sobre rodas em Marte em 1997, passando pelas gêmeas Spirit e Opportunity (2004), pela Curiosity (2012) e chegando à Perseverance e ao drone Ingenuity que acabam de desembarcar em Marte.

3. Onze milhões de nomes, “explorando como um”.

Chips com a gravação de 10 932 295 nomes estão incluídos nesta placa, fixada na parte traseira da Perseverance. Além disso, uma ilustração mostra uma comparação entre os diâmetros daa Terra e de Marte, enquanto no centro o Sol exibe raios que formam uma mensagem em código morse”. _.._ .__. ._.. ___ ._. . ._ … ___ _. .” (“Explore as One). [Nasa/JPL-Caltech]
Imagem da NAVCAM mostrando a placa instalada na barra traseira da Perseverance. [NAVCAM – NASA/JPL-Caltech]

Numa barra instalada na estrutura traseira do robô, uma placa carrega três chips com os quase 11 milhões de nomes enviados por internautas através do site da missão Mars 2020. Cada inscrito recebe um “Cartão de Embarque” e tem seu nome eternizado na estrutura do quinto e mais avançado veículo de exploração superficial já enviado à Marte.

A placa traz ainda a uma mensagem em código morse, formada pelos raios do Sol que ilustra a figura central da placa: “. _.._ .__. ._.. ___ ._. . ._ .. ___ _. . ” (“Explore as One”).

“Cartão de Embarque” para a missão Mars 2020 [Nasa/JPL-Caltech]

4. Dois mundos, um começo.

Alvo de calibração da MASTCAM-Z, uma poderosa câmera com zoom e alta resolução instalada no mastro da Perseverance junto com as câmeras de navegação NAVCAM e a SUPERCAM. [NASA/JPL-Caltech]

O alvo de calibração da das câmeras MASTCAM-Z traz pictogramas que ilustram a trajetória evolutiva da vida no planeta Terra e junto com eles a mensagem “TWO WORLDS, ONE BEGINNING” (Dois mundos, um começo). Este alvo é uma evolução do instalado no robô Curiosity que chegou em Marte em 2012.

Alvo de calibração instalado no jipe robô Curiosity. Ao longo dos anos de operação a poeira vem se depositando sobre sua superfície, mas é possível ler a mensagem “TO MARS TO EXPLORE”.

5. Elementar, meu caro Watson…

E para encerrar, um mistério digno de Sherlock Holmes…

O braço robótico da Perseverance carrega o espectrômetro SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals), que ajudará na busca por vida microbial primitiva em material coletado da superfície. Amostras da superfície também serão coletadas e armazenadas para posterior envio à Terra por uma futura missão também robótica. Para calibrar o espectrômetro e a câmera instalados no braço da Perseverance, alvos de referência estão instalados em uma placa. E num desses alvos as referências ao famoso detetive criado por Sir Arthur Conan Doyle continuam!

Os alvos incluem amostras de materiais utilizados em trajes espaciais, como teflon, vectran e policarbonato e o efeito da exposição destes materiais ao ambiente marciano também será estudado.

Mas talvez o mais curioso dos alvos seja esta moeda que traz não apenas a figura de Sherlock Holmes e de seu famoso endereço (221B, Baker Street) mas também uma mensagem escrita no código encontrado no conto “A aventura dos homenzinhos dançantes”. Você pode tentar decifrá-lo, ou ler nossa transcrição ao final do texto.

Esperamos que tenham se divertido com estes mistérios marcianos tanto quanto nós!
E aqui seguiremos acompanhando as aventuras do robô Perseverance no solo de Marte, prontos pra trazer até vocês a solução para mistérios científicos que ela busca desvendar! Quem sabe logo não teremos que escrever um post sobre a descoberta de vestígios de vida primitiva na cratera Jezero? Isso certamente não seria elementar, meu caro Watson.















<INÍCIO DE SPOILER>
a mensagem cifrada é “CACHE ME IF YOU CAN” (ARMAZENE-ME SE FOR CAPAZ) num trocadilho com “Catch me if you can” (Pegue-me se for capaz).
<FIM DE SPOILER>

GMT Brasil : Novo episódio da série Fascínio do Universo.

O comitê brasileiro do Telescópio Gigante Magalhães, instrumento que inaugura a era dos telescópios com mais de 20 m de diâmetro e que tem participação da agência paulista de fomento à pesquisa FAPESP, também conduz atividades de popularização e divulgação da astronomia. Uma delas é a série Fascínio do Universo, publicada no canal do YouTube do GMT Brasil.


Um novo episódio da série acaba de ser lançado, com participação do Dr. Irapuan Rodrigues, professor e pesquisador no Instituto de Pesquisa e Desenvolvimento da Universidade do Vale do Paraíba (UNIVAP) em São José dos Campos.

O episódio fala das origens do nosso universo, na grande expansão apelidada de Big Bang, evento cujos detalhes também poderão ser melhor compreendidos com as observações do Telescópio Gigante Magalhães.

Gaia – O mapeador dos céus.

Diagrama Hertzprung-Russel de 1 milhão de estrelas do catálogo Gaia EDR3 a menos de 200 parsecs.
Composição artística do satélite Gaia com a Via Láctea ao fundo. [créditos: ESA/ATG Medialab e ESO/S. Brunier]

O satélite Gaia não nos envia imagens exuberantes como o Telescópio Espacial Hubble, mas também se consagrou como um marco na história da astronomia, medindo com precisão sem precedentes o brilho, a posição, a distância e a velocidade de quase dois bilhões de estrelas.

Determinar a distância de objetos astronômicos é essencial para compreender as propriedades físicas desses objetos. Uma estrela que nos parece muito brilhante, pode na verdade ser um objeto modesto mas muito próximo de nós. Por outro lado, fontes que parecem apenas uma pequena estrela podem na verdade corresponder a uma galáxia inteira nos confins do universo observável. E o Gaia é o campeão na determinação destes dados que nos permitem calibrar nossas escalas astronômicas de distância, entender melhor a evolução estelar e estimar com mais precisão a própria idade do universo superando inclusive o já impressionante desempenho de seu antecessor, o satélite Hipparcos (1989-1993).

O catálogo final do Gaia estará disponível em 2022, mas três liberações públicas de dados parciais já foram realizadas – a última delas (Early Data Release 3 – EDR3) em dezembro de 2020. Os dados são públicos e os acessamos para criar o gráfico abaixo, conhecido como diagrama HR e fundamental para o entendimento da evolução das estrelas, utilizando dados de 1 milhão de estrelas do catálogo do Gaia, localizadas a menos de 200 parsecs.

O astrofísico Alexandre Oliveira, professor e pesquisador da Universidade do Vale do Paraíba, em São José dos Campos (SP), nos conta que “A excelente qualidade destes dados permite enxergar detalhes nunca antes percebidos, como a assinatura de tipos diferentes de Anãs Brancas, com núcleos ricos em Hidrogênio, Hélio ou Carbono, representados pelas três faixas estreitas no canto inferior esquerdo. Também é visível, na região das Gigantes Vermelhas, um adensamento de forma longa e diagonal conhecido como Red Clump, associado a estrelas de baixa massa que queimam Hélio em seus núcleos.

Diagrama HR de uma amostra de 1 milhão de estrelas localizadas a menos de 200 parsecs (652 anos luz) [créditos: Gaia/ESA/DPAC, Wandeclayt M./Céu Profundo]

Vem cometa brilhante aí! Prepare seu Stellarium!

O cometa C/2021 A1 Leonard, ao lados planetas Vênus, Júpiter e Saturno na última quinzena de dezembro de 2021, após o pôr do Sol. [Simulação: Stellarium]

O ano de 2021 promete terminar bem melhor do que começou! Além da esperança trazida pela aprovação das vacinas contra o nefasto coronavírus, o céu também nos dá a esperança de terminarmos 2021 contemplando uma luz no horizonte: o brilho do recém descoberto cometa C/2021 A1 Leonard deve atingir magnitude 0 na última quinzena de dezembro.

Projeção da evolução do brilho do cometa C/2021 A1 Leonard [Crédito: TheSkyLive ]

A escala de magnitudes é invertida e números menores significam brilhos maiores. Conseguimos ver a olho nu objetos com magnitude abaixo de 6, desde que estejamos em locais escuros, longe da poluição luminosa das áreas urbanas. Magnitude 0 é equivalente ao brilho da estrela Vega, a mais brilhante da constelação de Lira – e isso significa que, caso a previsão se confirme, o cometa será 250 vezes mais brilhante que o limite de visibilidade a olho nu, ou seja, vamos conseguir vê-lo até dentro das cidades!

No segundo semestre de 2020, o cometa C/2020 F3 Neowise ganhou grande atenção do público e da mídia, mas sua visualização não era favorecida no hemisfério sul.

Mas cometas em geral são corpos bem imprevisíveis e podemos ter essas projeções frustradas ao longo do ano. O bom é continuar acompanhando a evolução do Leonard pelos próximos meses, enquanto ele se aproxima do Sol, para ter uma ideia de como sua curva de brilho se comportará realmente.

Enquanto isso, adicione-o ao banco de objetos do Stellarium [disponível gratuitamente em www.stellarium.org] para seguir sua trajetória ao longo do ano. O procedimento é simples. Basta seguir estes passos:

Janela principal do Stellarium.

Utilizando o menu lateral ou a tecla de função F2, acesse o menu de configurações do Stellarium.

Janela de Plugins

Na tela de configurações, acesse o plugin Solar System Editor e clique em configurar.

Na aba Sistema Solar, clique em importar elementos orbitais no formato MPC.

Na aba de busca online, digite a designação do cometa: C/2021 A1

Você verá o resultado C/2021 A1 (Leonard) na tela seguinte. Selecione a caixa ao lado do nome do cometa e a opçnao atualizar apenas os elementos orbitais e clique em <Adicionar objetos>.

Pronto! O promissor cometa Leonard estará disponível no catálogo de objetos do Stellarium e pode ser procurado utilizando a janela de busca (tecla de função F3).

Urano, uma coleção de surpresas!

Urano pelo telescópio espacial Hubble [crédito: NASA, ESA, e A. Simon (NASA Goddard Space Flight Center), e M. Wong and A. Hsu (University of California, Berkeley)]

Quando William Herschel descobriu Urano com seu telescópio refletor de 6 polegadas em 1781 não estava apenas fazendo a primeira descoberta de um planeta na era dos telescópios, estava revelando uma nova família de objetos em nosso sistema solar.
Urano e seu vizinho Netuno (descoberto em 1646 a partir do estudo de anomalias na trajetória orbital de Urano) possuem diâmetro aproximadamente 4 vezes maior que o da Terra e não se aproximam do gigantismo de seus primos Júpiter (11,2 diâmetros terrestres) e Saturno (9,45 diâmetros terrestres).
Compostos por núcleos rochosos muito densos e com aproximadamente o tamanho da Terra, girando com período de aproximadamente 17h (Urano) e 16h (Netuno), ambos os planetas possuem atmosferas ricas em hidrogênio molecular e campos magnéticos com polos muito desalinhados com relação ao eixo de rotação.

Mas Urano continuou se revelando surpreendente ainda no século XX. Em 1977, durante as observações da ocultação de uma estrela pelo planeta, percebeu-se que 40 minutos antes e 40 minutos após a ocultação, o brilho da estrela sofreu uma série de variações consistentes com a presença de um sistema de anéis em volta do planeta. Até então, apenas os anéis de Saturno eram conhecidos. Em 1979, anéis também seriam observados em Júpiter pela sonda Voyager 1 e em 1989 a Voyager 2 confirmaria a existência de anéis também em Netuno.

Imagem a partir de dados obtidos no infravermelho no comprimento de 1.6 µm pelo telescópio espacial Hubble. Os anéis aparecem evidenciados. [Créditos: NASA/ESA/Hubble. Processamento: Wandeclayt M./Céu Profundo ]

Apesar de seu tênue sistema de anéis não ser detectável diretamente em observações em luz visível por telescópios terrestres, é possível visualizá-los quando observamos no infravermelho.

Outra peculiaridade Uraniana é a inclinação de seu eixo de rotação! O planeta está “deitado” em seu plano orbital. A inclinação de seu eixo é de 98º em relação ao plano da órbita. Esta inclinação causa em Urano as mais extremas estações do Sistema Solar. Durante seu período de translação de aproximadamente 84 anos terrestres, cada estação dura 21 anos. Nos solstícios, o eixo de Urano aponta diretamente para o Sol e um observador situado no polo do hemisfério onde é verão veria o Sol sobre sua cabeça durante todo o dia!

Marte encontra Urano!

Um mês após o espetáculo exuberante da Grande Conjunção de Júpiter e Saturno em dezembro de 2020, uma dupla bem mais discreta se forma nos céu de janeiro, especialmente entre os dias 18 e 21: Marte e o distante Urano se alinham no céu noturno e oferecem uma excelente oportunidade para observação com binóculos ou pequenos telescópios.

Quando em oposição, Urano atinge magnitude 5.5, o que o coloca dentro do limite de visibilidade a olho nu para observadores em regiões muito escuras, longe da poluição luminosa das áreas urbanas. Mas isto não o torna um alvo fácil. Seu discreto tamanho angular não torna fácil diferenciá-lo das estrelas observadas no mesmo campo. Apenas o tom azul esverdeado o denuncia. Então, a presença de um objeto de referência, como Marte, torna mais fácil o trabalho de localizá-lo no céu, sobretudo para iniciantes.

Então vamos às dicas: a máxima aproximação acontece na noite do dia 20/01, quando os planetas estarão separados por pouco mais de 1,5º na esfera celeste. Isso corresponde a 6 vezes o diâmetro aparente da Lua Cheia.

Lua, Marte e Urano no dia 20/01/2021 [Simulação: Stellarium]

Na mesma data (20/01), a Lua também se junta à composição, passando a pouco menos de 7º ao Sul da dupla de planetas.

Lua, Marte e Urano no dia 20/01/2021 [Simulação: Stellarium]
Céu sobre o horizonte noroeste às 20h do dia 20/01/2021 em São José dos Campos (SP) [simulação: Stellarium]

Para encontrar esses astros reunidos, olhe na direção noroeste por volta das 20h. Marte é o objeto mais brilhante e avermelhado nesta direção. Mas cuidado para não confundir: um pouco mais ao Norte, um outro astro vermelho pode chamar a atenção – Aldebaran, a estrela mais brilhante na constelação do Touro. A configuração não muda muito durante a semana e a única diferença significativa é a presença da Lua no dia 20.

Criando Imagens Astronômicas com Telescópio Hubble

Imagem RGB do planeta Marte produzida com dados de arquivo do telescópio espacial Hubble [imagem: Hubble/STscI. processamento: Wandeclayt M.]

Que tal produzir imagens como esta do planeta Marte utilizando dados reais do telescópio espacial Hubble? Isto é não apenas possível como até relativamente simples. E vamos mostrar pra você, passo-a-passo, como pesquisar o arquivo do Hubble em busca de dados e como processá-los para gerar uma imagem colorida como esta.

Os dados do Hubble e de quase todos os grandes observatórios astronômicos são disponibilizados integralmente ao público após um período de exclusividade para o pesquisador que propôs a observação. Isto permite que novas descobertas sejam feitas por outros grupos de cientistas ao analisar os dados arquivados e isso inclui a possibilidade de seu uso por cientistas cidadãos.

Colocando a mão na massa!

Vamos mostrar agora um exemplo prático, fácil e rápido, que não requer prática nem tampouco habilidade, pra mostrar que qualquer criança brinca e se diverte com o telescópio espacial mais querido do mundo!

Marte e a Terra tiveram uma aproximação histórica em agosto de 2003, quando os dois planetas estiveram a menos de 56 milhões de km de afastamento. Que tal se procurarmos observações do Hubble nesse período para criar nossa imagem de Marte?

Para isso vamos acessar a interface de busca no arquivo do Hubble em

https://archive.stsci.edu/hst/search.php

Faremos uma busca por imagens do instrumento WFPC2 (Wide Field Planetary Camera 2), tendo como alvo o planeta Marte (Target Descrip: Mars) e início da observação após 20 de agosto de 2003 (Start Time: > 2003 aug 20). Escolhemos essa data porque a oposição ocorreu no dia 28 de agosto e a máxima aproximação no dia 27 de agosto, então qualquer imagem capturada aproximadamente uma semana antes ou após estes eventos pode ser interessante.

Seleção de parâmetros de busca no arquivo do Hubble.

Entre os resultados dessa busca, vemos que há observações bem promissoras próximas do nosso período de interesse. Vamos agora selecionar quais delas usaremos para compor nossa imagem!

Nosso objetivo é criar uma imagem com cores razoavelmente naturais de Marte.
Mas a câmera do Hubble é monocromática, assim como todas as câmeras astronômicas científicas de alto desempenho instaladas em telescópios para pesquisa. Mas se temos à nossa disposição apenas imagens originalmente em escala de cinza e queremos chegar numa imagem colorida, qual a magia necessária?

Escolhendo os ingredientes do bolo


O segredo para gerar uma imagem colorida a partir das imagens monocromáticas do Hubble – ou de qualquer outro telescópio – é atribuir as cores vermelha (R), verde (G) e azul (B) para imagens em tons de cinza e combiná-las num arquivo colorido RGB.

Isto funciona porque cada arquivo em tons de cinza registrou apenas uma “cor” da luz incidente. Escrevemos cor entre aspas porque na verdade algumas faixas de comprimento de onda registrados pela câmera nem caracterizam “cores” da maneira como as enxergamos. Afinal, que cor é infravermelho? Ou ultravioleta?

Mas vamos ao que interessa! Que arquivos usaremos para compor nossa imagem?
Nossa sugestão é usar os arquivos do dia 26 de agosto, registrados através dos filtros F631N (vermelho), F502N (verde) e F401M (azul). O horário de captura é uma informação importante também. Como Marte também está girando em torno de seu eixo, é importante que não haja um grande intervalo entre cada exposição, para que possamos sobrepor as três imagens sem que o movimento de rotação do planeta atrapalhe a composição.

Clicando no nome dos arquivos selecionados, uma imagem prévia é exibida para inspeção.
E se tudo parecer bem, podemos partir para a requisição dos arquivos originais.

Pré visualização de um dos resultados da busca no sistema de arquivos do Hubble.


Requisitando os arquivos originais

Após a inspeção dos arquivos selecionados, estamos prontos para baixar os dados para nosso processamento. No alto da tela, use o botão <submit marked data for retrieval from STDADS>.

Na tela seguinte, informe seu email, marque a opção “Calibrated” e selecione a extensão “c0m“. Clique no botão <Send retrieval request to ST-DADS>.

Se tudo deu certo, você verá uma tela de confirmação e logo receberá um email com o link para a pasta de download dos arquivos que você poderá acessar usando seu browser ou um cliente de ftp.

Tela de confirmação da requisição de arquivos do Hubble.

E onde eu coloco esses arquivos?

Excelente pergunta! Para abrir e manipular os arquivos FITS precisaremos do programa gratuito SAO Image DS9. Ele está disponível para os sistemas operacionais Linux, Mac OS e Windows no link abaixo.

https://sites.google.com/cfa.harvard.edu/saoimageds9/download

Agora que você instalou e baixou o DS9, podemos ir para a parte mais divertida de nossa tarefa.

No menu do DS9 clique em Frame > New Frame RGB.
Além da janela principal do DS9, a janela RGB será exibida:

Na primeira coluna (current) da janela RGB selecionamos que camada do arquivo está ativa e na segunda coluna (view) temos as caixas de seleção de visibilidade das camadas. Vamos manter a seleção atual e carregar o arquivo da camada vermelha (Red) de nossa composição. Podemos usar o menu File > Open, ou os botões <file> e <open> na barra de botões da interface gráfica, para carregar o arquivo correspondente à cor vermelha (Filtro F631N).

Certinho. Carregamos o arquivo. Mas talvez essa tela preta não seja exatamente o que você estava esperando. Calma! A informação está aí em algum lá! Vamos procurá-la!

Clique nos botões <scale> e <linear>, esses que estão em azul na janela acima. Agora vá no menu Scale > Scale Parameters. Você verá agora um histograma como o da janela abaixo:

Esse histograma nos mostra que toda a informação está concentrada nos tons mais escuros. Para tornar essa informação visível, mudaremos manualmente os limites Low e High. Colocamos os valores 200 (Low) e 2400 (High), como na janela abaixo, e clicamos em <Apply>.

E o resultado é este:

Agora temos a primeira camada de nossa imagem carregada e visível.
Em seguida, voltamos à janela RGB e marcamos na coluna current a camada verde (Green) e voltamos ao menu File > Open (ou aos botões na barra) para carregar o arquivo correspondente à cor verde (filtro F502N). Repetimos a operação marcando a camada azul (Blue) e carregando o arquivo correspondente à cor azul (filtro F401M).
Se necessário repita o procedimento que utilizamos na camada vermelha com os histogramas de cada camada.

É possível também que as imagens não estejam completamente alinhadas, como no exemplo abaixo. E precisaremos alinhá-las manualmente.

O formato FITS suporta informações de WCS (World Coordinate System) – o sistema de coordenadas celestes utilizado – o que é fundamental para alinhar imagens de estrelas e de objetos de céu profundo como galáxias e nebulosas. Mas no caso dos planetas, o sistema de coordenadas não vai nos ajudar muito, porque estes objetos se deslocam com relação ao fundo de estrelas. A alternativa aqui, já que Marte está centralizado em cada frame, é tentar fazer o alinhamento diretamente pelas bordas das imagens.

Na janela RGB, acesse o menu e selecione a opção align > image.

Se tudo der certo, as imagens estarão coincidentemente sobrepostas e este será o resultado:

É possível exportar a imagem final em vários formatos (tiff, jpeg, png, gif) no menu File > Save image.

Você pode continuar experimentando valores diferentes nos parâmetros de escala do histograma. Pode inclusive experimentar outros modos além do Linear. Você vai ver que cada mudança de parâmetro pode evidenciar ou suprimir certas características. Você pode também experimentar com imagens capturadas em outros filtros, acrescentando dados em infravermelho ou ultravioleta, por exemplo. Uma dica é atribuir as camadas R, G e B por ordem decrescente de comprimento de onda. Use o R para comprimentos de onda mais longos, G para intermediários e B para os comprimentos de onda mais curtos.

Deu pra notar que as possibilidades são infinitas, né? Então que tal explorar os arquivos e tentar outras composições? Nós vamos querer ver os resultados! Então não esquecer de marcar o @ceuprofundo quando postar suas imagens nas redes sociais!

Asteroides Potencialmente Perigosos. O que são?

Asteroides como Bennu, visto acima em um mosaico composto por 12 imagens registradas pela missão OSIRIS-REx da NASA, são verdadeiros fósseis espaciais, conservando suas características por bilhões de anos e podem nos ajudar a entender a formação dos planetas do Sistema Solar. [Crédito: NASA/Goddard/University of Arizona]

Você certamente já se deparou com manchetes como esta: “Asteroide maciço pode se chocar com a Terra no próximo ano, informa NASA”. E tudo bem se você se assustar num primeiro momento, mas pode relaxar, porque a intenção de uma manchete como essa é apenas assustar, chocar e ganhar cliques!

Mas o risco real de impactos com objetos potencialmente perigosos no futuro próximo é desprezível e você pode seguir a vida se preocupando com riscos mais imediatos, como doenças, atropelamentos e ativistas anti-vacina.

Pra falar sobre isso, recebemos um reforço de peso. Chamamos o astrofísico Cássio Barbosa para nos ajudar a contar um pouco da história desses pedregulhos espaciais.

Mas o que são esses pedregulhos?

Se você já fez uma pequena reforma em sua casa, sabe a quantidade de entulho que sobra no final da construção. No processo de formação do Sistema Solar não foi muito diferente. Com o agravante de não podermos chamar uma caçamba pra levar embora todos os cometas e asteroides que sobraram depois da formação dos planetas, planetas anões e satélites do Sistema Solar.

Cássio nos lembra que “Quem fez (e ainda faz) esse papel de limpeza foram o Sol, Júpiter e Saturno, corpos celestes de maior massa no Sistema Solar.
Ainda assim, há bastante entulho na forma de cometas e asteroides e estudar esses objetos é importante porque eles nos fornecem informações importantes sobre esse primitivo canteiro de obras que formou o Sistema Solar há 4.6 bilhões de anos.

Os cometas, compostos principalmente de gelo e poeira, são corpos voláteis que sublimam (passam do estado sólido diretamente para o gasoso) quando passam pelos pontos de suas órbitas mais próximos do Sol, produzindo uma nuvem de gás e íons que conferem a beleza que tanto encanta os observadores. Os asteroides são mais discretos. Corpos rochosos, sem cauda ou cabeleira, mas igualmente importantes para nos ajudar a entender a origem do Sistema Solar.

E onde mora o perigo?

O problema vem quando esses objetos possuem órbitas que cruzam a órbita terrestre. Mas isso não significa que objetos que “podem” colidir com a Terra irão de fato impactar nosso planeta.

Os objetos próximos à Terra são chamados de NEOs (Near Earth Objects) e são estudados e constantemente monitorados por observatórios profissionais especializados em pequenos corpos do Sistema Solar, como o projeto Catalina Sky Survey, que tem o objetivo de catalogar 90% da população estimada de objetos com mais de 140m de diâmetro.

Além das redes de alerta e detecção como o Catalina, dados observacionais de várias fontes se somam para caracterizar a massa, dimensões, albedo e magnitude dos NEOs.
Um dos elos nessa corrente é o Observatório Astronômico do Sertão de Itaparica (OASI) – uma unidade do Observatório Nacional, operando na cidade de Itacuruba (PE). Outra peça chave no estudo dos NEOs é a vasta rede de astrônomos cidadãos que alimentam as bases de dados profissionais com suas observações.

Mesmo sem um risco imediato de colisão, é importante conhecer nossa vizinhança e mapear os objetos que no longo prazo possam representar uma ameaça de impacto catastrófico. O importante aqui é conhecer com precisão o movimento de cometas e asteroides próximos e prever com grande antecedência suas trajetórias.

Esse cuidadoso e constante monitoramento dos NEOs nos permite estabelecer rapidamente os parâmetros orbitais de cada objeto recém descoberto, mas ainda assim é comum que inicialmente as incertezas sejam grandes o suficientes para garantir o sensacionalismo das manchetes!

Especificamente, para ser incluído na classe de Asteroides Potencialmente Perigosos, ou PHA (Potentially Hazardous Asteroids), um objeto precisa ter mais de 140m de diâmetro E atingir uma distância mínima de intersecção com a órbita a Terra (MOID – Minimum Orbit Intersection Distance) de 7,5 milhões de km ( isso equivale a aproximadamente 20 vezes a distância da Terra a Lua ).

Uma boa dica para abafar qualquer teoria da conspiração é ir direto à fonte. Os dados de monitoramento desses objetos são públicos e podem ser acessados pela página do Centro para Estudos de Objetos Próximos à Terra (CNEOS) da NASA/JPL.

Inclusive com uma lista das futuras aproximações disponível AQUI.

Tamanho do objetoFrequencia dos impactosEfeito
fragmentos de cometas e asteroidesdiáriosdesintegração na atmosfera (meteoros)
maior que 100m10 mil anosdestruição em escala local
maior que 1km>100 mil anosdestruição em escala global
Pequenos fragmentos de cometas e asteroides entram diariamente em nossa atmosfera, sem maiores consequências. Impacto com objetos maiores são muito mais raros.