Objetos como o asteroide recém descoberto 2024 YR4, com órbita que se aproxima ou intercepta a órbita da Terra, são de especial interesse para a astronomia pela possibilidade de um eventual impacto futuro com nosso planeta.
Usualmente, os dados observacionais preliminares proporcionam uma precisão muito limitada para a determinação das órbitas desses objetos e apenas após um período mais longo de observação é possível refinar esses cálculos, determinando uma trajetória precisa. De qualquer forma, por cautela, probabilidades iniciais de impacto acima de 1% merecem atenção. Afinal, nosso planeta já viveu um episódio traumático com um asteroide.
Extinção em Massa
Segundo o registro fóssil, a vida na Terra enfrentou cinco eventos de extinção em massa nos últimos 500 milhões de anos. O mais recente deles, responsável pela extinção dos dinossauros no final do período Cretáceo, há cerca de 65 milhões de anos, coincide com o impacto de um asteroide com tamanho estimado de 10 km na região da Península de Yucatán, no sul do Golfo do México.
Sobre a porção de terra da Península, estruturas semi circulares delimitam uma cratera de aproximadamente 160 km que tem a maior parte de sua área, incluindo o pico central do impacto, nas águas do Golfo.
O consenso atual da comunidade científica é de que esse impacto tenha sido a principal causa da última das grandes extinções. Isso justifica o constante monitoramento dos céus em busca de objetos cujas órbitas interceptem a da Terra e que possam apresentar riscos de colisão. Afinal, outros impactos menores também deixaram suas marcas na superfície de nosso planeta, inclusive em território brasileiro.
Crateras de Impacto no Brasil
Ao contrário das crateras de impacto na Lua, em Marte e em outros corpos do Sistema Solar onde não ocorrem processos erosivos pela chuva e pelo vento, as crateras na Terra são fortemente desbastadas ao longo do tempo e poucas conservam suas características ou dimensões originais. Ainda assim, vestígios de grandes impactos, mesmo sob a ação da erosão, sobreviveram à passagem das eras e podem ser encontrados hoje.
Em Tocantins, na Serra da Cangalha estão as estruturas de impacto mais bem preservadas em solo brasileiro. Uma formação com aproximadamente 14 km de diâmetro, com anéis concêntricos, formada a menos de 250 milhões de anos, pode ser vista com facilidade em imagens de satélite.
![](https://ceuprofundo.com/wp-content/uploads/2025/02/cangalha-1024x1024.jpg)
Outras grandes estruturas de impacto no Brasil são o Domo de Araguainha, em Mato Grosso, e a Cratera de Colônia, em São Paulo.
Não esperamos que um objeto tão grande quanto o de Yucatán, com potencial para uma nova extinção em massa, esteja em rota de colisão com a Terra. Mas objetos menores, capazes de produzir eventos que causem danos localmente, sobretudo se atingirem zonas densamente habitadas, são abundantes no Sistema Solar atual.
Dimorphos na Caçapa do Meio!
Os programas de monitoramento dos Objetos Próximos da Terra, ou NEOs – na sigla em inglês para Near Earth Objects – buscam e monitoram esses objetos, permitindo determinar seus parâmetros orbitais e propriedades físicas. Esses dados podem garantir que danos sejam mitigados ou mesmo que missões capazes de defletir a órbita de objetos potencialmente perigosos possam ser projetadas e lançadas a tempo de prevenir desastres.
Uma tecnologia de redirecionamento orbital foi testada recentemente com a missão DART (Double Asteroid Redirection Test), lançada pela NASA em novembro de 2021.
A missão DART tinha como objetivo testar e validar o método de redirecionamento orbital através de impacto. Em 26 de setembro de 2022, a DART alcançou o asteroide (65803) Didymos e atingiu com sucesso sua pequena lua Dimorphos.
![](https://ceuprofundo.com/wp-content/uploads/2025/02/DydimosDimorphos-1024x1024.jpg)
Colidindo frontalmente com Dimorphos, esperava-se que a DART fosse capaz de “transferir momento” (essa é a forma técnica de dizer que a nave iria alterar a velocidade do pequeno satélite ) para o pequeno corpo, modificando a geometria de sua órbita. É similar ao que acontece com bolas de sinuca, quando uma bola em movimento colide com uma bola parada. A primeira bola pode parar completamente enquanto a segunda bola passa a se mover com a mesma velocidade da primeira.
![](https://ceuprofundo.com/wp-content/uploads/2025/02/DART_impact_LiJY-1024x643.png)
![](https://ceuprofundo.com/wp-content/uploads/2025/02/1-s2.0-S0094576524002005-gr3.jpg)
Observações subsequentes confirmaram que a missão foi um sucesso, reduzindo em 33 minutos o período orbital de Dimorphos em torno de Didymos, passando de aproximadamente 11h55min para 11h22min.
Esse valor supera com larga margem a expectativa inicial de uma redução de 7 minutos no período orbital do sistema.
Objetos Próximos da Terra
É ótimo saber que já temos um método de redirecionamento testado e validado, porque o número total de asteroides próximos catalogados passa de 37 mil, com mais de 11 mil deles com diâmetro superior a 140 m e quase 900 excedendo 1 km.
Desses objetos, cerca de 2500 são potencialmente perigosos.
E se esses números parecem grandes, vale lembrar que nossa capacidade de detecção vem sendo constantemente ampliada e que a entrada em operação de telescópios com campos de visão amplos, dedicados a levantamentos (surveys) que varrerão grandes áreas do céu em noites sucessivas, proporcionarão um salto em nossa capacidade de detecção, com um consequente salto no número de objetos catalogados.
O gráfico abaixo mostra o total acumulado de asteroides próximos da Terra, descobertos até 12 de fevereiro de 2025.
![](https://ceuprofundo.com/wp-content/uploads/2025/02/nea_vs_time_chart-1024x683.png)
De olho no 2024 YR4
Classificado até a data de publicação deste post na categoria 3 da escala de Torino, o asteroide 2024 YR4 ocupa o topo da lista de risco de Asteroides Potencialmente Perigosos (PHAs, na sigla em inglês para Potentially Hazardous Asteroids) e você provavelmente vai ver manchetes alarmistas nos sites de notícias e postagens sensacionalistas nas redes sociais. Mas esta classificação não significa que haja um impacto confirmado e de grandes proporções nos esperando.
![Diagrama das órbitas dos planetas Mercúrio, Vênus, Terra, Marte e Júpiter. Estas órbitas são aproximadamente circulares. A órbita do asteroide 2024 YR4 está plotada no diagrama como uma elipse que interceptas as órbitas de Marte e da Terra e está totalemnte contida dentro da órbita de Júpiter.](https://ceuprofundo.com/wp-content/uploads/2025/02/2024YR4_fev25.jpg)
A escala de Torino combina a probabilidade de impacto (na data desta publicação, calculada em aproximadamente 2%) com a extensão da potencial destruição causada pela colisão. No caso do 2024 YR4, um asteroide com diâmetro estimado em entre 40 e 90 m, a destruição seria restrita às vizinhanças da área do impacto.
![](https://ceuprofundo.com/wp-content/uploads/2025/02/Screen-Shot-2025-02-15-at-15.22.50.png)
Estes números podem, no entanto, variar bastante com a inclusão de novos dados observacionais coletados com telescópios terrestres até meados do primeiro semestre de 2025 e, após isso, pelo acompanhamento feito por telescópios espaciais infravermelhos.
Após essa janela de observação, o 2024 YR4 voltará a ser observável em 2028 em sua próxma passagem (sem risco de colisão) pelas proximidades da Terra.
O 2024 YR4 foi descoberto em 27 de dezembro de 2024, no Chile, por um dos quatro telescópios da rede ATLAS (Asteroid Terrestrial-impact Last Alert System). Composta por outros três telescópios (2 no Havaí e 1 na África do Sul), a rede ATLAS varre o céu várias vezes por noite em busca de objetos que se movam. Para ter uma ideia da eficiência desse sistema, até a data desta publicação, os telescópios da rede ATLAS já haviam descoberto 98 cometas, 4489 supernovas, 1160 asteroides próximos da Terra (NEAs) e 107 asteroides potencialmente perigosos (PHAs).
![](https://ceuprofundo.com/wp-content/uploads/2025/02/2024yr4_discovery_atlas.gif)
A notificação emitida pela IAWN (International Asteroid Warning Network) estabelece 22 de dezembro de 2032 como a data para um eventual impacto. Notificações são emitidas para probabilidades de impacto acima de 1%, mas é comum que novas observações levem a uma queda nessa probabilidade.
Não Entre em Pânico!
Embora haja um risco baixo, mas real, de uma colisão no futuro próximo, o acompanhamento deste objeto pelos próximos anos permitirá traçar com menos incerteza sua órbita, definindo se o impacto de fato ocorrerá e quais estratégias de defesa podem ser adotadas. Até lá, cabe aos cientistas, autoridades e à população, garantir o apoio e o investimento contínuo na ciência, sabendo que além dos perigos que encontramos na superfície há ameaças que vem do céu.
Escala de Torino
Nível | Zona/Cor | Descrição |
---|---|---|
0 | Sem Risco (Branco) | A probabilidade de colisão é zero ou tão baixa que é efetivamente zero. Aplica-se também a pequenos objetos como meteoros que se desintegram na atmosfera. |
1 | Normal (Verde) | Descoberta rotineira de objeto que com previsão de passagem próximo à Terra sem risco fora do comum. Observações telescópicas adicionais provavelmente reclassificarão para nível 0. |
2 | Atenção Astronômica (Amarelo) | Encontro próximo mas não incomum. Colisão muito improvável. Merece atenção dos astrônomos, mas não há necessidade de atenção do público e de autoridades. Observações adicionais provavelmente reclassificarão para nível 0. |
3 | Atenção Astronômica (Amarelo) | Encontro próximo com chance de colisão ≥1% capaz de causar destruição localizada. Observações adicionais provavelmente reclassificarão para nível 0. Atenção do público e de autoridades é necessária se o evento ocorrer em menos de uma década. |
4 | Atenção Astronômica (Amarelo) | Encontro próximo com de chance de colisão ≥1%, capaz de causar devastação regional. Observações adicionais provavelmente reclassificarão para nível 0. Atenção do público e de autoridades é necessária se o evento ocorrer em menos de uma década. |
5 | Ameaça (Laranja) | Risco sério (porém incerto) de devastação regional. Atenção da comunidade astronômica é necessária para determinar conclusivamente se a colisão ocorrerá ou não. Planejamento governamental necessário se o evento ocorrer em menos de uma década. |
6 | Ameaça (Laranja) | Risco sério (porém incerto) de catástrofe global. Atenção da comunidade astronômica é necessária para determinar conclusivamente se a colisão ocorrerá ou não. Planejamento governamental necessário se o evento ocorrer em menos de 30 anos. |
7 | Ameaça (Laranja) | Encontro extremamente próximo com grande objeto, que se ocorrer dentro de um século, ameaça catástrofe global sem precedentes (porém incerta). Planejamento internacional é requerido para determinar conclusivamente e com urgência se a colisão ocorrerá ou não. |
8 | Colisão Certa (Vermelho) | Colisão certa capaz de destruição localizada (terrestre) ou tsunami (oceânico). Frequência média: 1 evento a cada 50 a 1000 anos. |
9 | Colisão Certa (Vermelho) | Colisão certa capaz de devastação regional sem precedentes para colisão em terra ou grande tsunami para colisão no oceano. Frequência média: 1 evento a cada 10.000 a 100.000 anos. |
10 | Colisão Certa (Vermelho) | Colisão certa capaz de catástrofe climática global com potencial para ameaçar o futuro da civilização. Frequência média: menos de 1 evento a cada 100.000 anos. |
Referências
[1] – Vasconcelos et al., The Serra da Cangalha impact structure, Brazil: Geological, stratigraphic and petrographic aspects of a recently confirmed impact structure,
Journal of South American Earth Sciences, Volume 45, 2013, Pages 316-330,
ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2013.03.007. Acesso em 12/2/2025.
[2] – Earth Impact Database – http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/SouthAmerica.html. Acesso em 12/2/2025.
[3] – Revista Pesquisa FAPESP, Serra da Cangalha – Marcas de um Meteorito, https://revistapesquisa.fapesp.br/marcas-de-um-meteorito/ . Acesso em 12/2/2025.
[4] – Thomas, C.A., Naidu, S.P., Scheirich, P. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature 616, 448–451 (2023). https://doi.org/10.1038/s41586-023-05805-2
[5] – Cheng, A.F., Agrusa, H.F., Barbee, B.W. et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature 616, 457–460 (2023). https://doi.org/10.1038/s41586-023-05878-z. Acesso em 12/2/2025.
[6] Li, JY., Hirabayashi, M., Farnham, T.L. et al. Ejecta from the DART-produced active asteroid Dimorphos. Nature 616, 452–456 (2023). https://doi.org/10.1038/s41586-023-05811-4. Acesso em 12/2/2025.
[7] Nancy Chabot, Elena Adams, Andy Rivkin, Jason Kalirai. DART: Latest results from the Dimorphos impact and a look forward to future planetary defense initiatives, Acta Astronautica, Volume 220, 2024, 118-125. https://doi.org/10.1016/j.actaastro.2024.04.001. Acesso em 12/2/2025.
[8] J. L. Tonry, L. Denneau, A. N. Heinze, B. Stalder, et al. ATLAS: A High-Cadence All-Sky Survey System. Publications of the Astronomical Society of the Pacific, Volume 130, 988. (2018) http://dx.doi.org/10.1088/1538-3873/aabadf . Acesso em 12/2/2025.
[9] Hannah Ritchie (2022) – “There have been five mass extinctions in Earth’s history” Publicado online em OurWorldinData.org. : ‘https://ourworldindata.org/mass-extinctions‘. Acesso em 15/2/2025.
[9] Urrutia-Fucugauchi, Jaime, Camargo-Zanoguera, Antonio, Pérez-Cruz, Ligia, Pérez-Cruz Guillermo . The Chicxulub multi-ring impact crater, Yucatan carbonate platform, Gulf of Mexico. Geofísica Internacional. 2011, 50(1), 99-127. ISSN: 0016-7169. Disponível em: https://www.redalyc.org/articulo.oa?id=56820060007. Acesso em 18/2/2025.
Cite esta publicação: Wandeclayt M. (2025) - “A Ameaça Vem do Céu” Publicado online em CeuProfundo.com. Acessado em: 'https://www.ceuprofundo.com' [Recurso Online] @article{ameacaNEO, author = {Wandeclayt M.}, title = {A Ameaça Vem do Céu}, journal = {Céu Profundo}, year = {2025}, url = {https://ceuprofundo.com} }