2024 YR4: A Ameaça Vem do Céu!

Objetos como o asteroide recém descoberto 2024 YR4, com órbita que se aproxima ou intercepta a órbita da Terra, são de especial interesse para a astronomia pela possibilidade de um eventual impacto futuro com nosso planeta.

Usualmente, os dados observacionais preliminares proporcionam uma precisão muito limitada para a determinação das órbitas desses objetos e apenas após um período mais longo de observação é possível refinar esses cálculos, determinando uma trajetória precisa. De qualquer forma, por cautela, probabilidades iniciais de impacto acima de 1% merecem atenção. Afinal, nosso planeta já viveu um episódio traumático com um asteroide.

Extinção em Massa

Segundo o registro fóssil, a vida na Terra enfrentou cinco eventos de extinção em massa nos últimos 500 milhões de anos. O mais recente deles, responsável pela extinção dos dinossauros no final do período Cretáceo, há cerca de 65 milhões de anos, coincide com o impacto de um asteroide com tamanho estimado de 10 km na região da Península de Yucatán, no sul do Golfo do México.
Sobre a porção de terra da Península, estruturas semi circulares delimitam uma cratera de aproximadamente 160 km que tem a maior parte de sua área, incluindo o pico central do impacto, nas águas do Golfo.

O consenso atual da comunidade científica é de que esse impacto tenha sido a principal causa da última das grandes extinções. Isso justifica o constante monitoramento dos céus em busca de objetos cujas órbitas interceptem a da Terra e que possam apresentar riscos de colisão. Afinal, outros impactos menores também deixaram suas marcas na superfície de nosso planeta, inclusive em território brasileiro.

Crateras de Impacto no Brasil

Ao contrário das crateras de impacto na Lua, em Marte e em outros corpos do Sistema Solar onde não ocorrem processos erosivos pela chuva e pelo vento, as crateras na Terra são fortemente desbastadas ao longo do tempo e poucas conservam suas características ou dimensões originais. Ainda assim, vestígios de grandes impactos, mesmo sob a ação da erosão, sobreviveram à passagem das eras e podem ser encontrados hoje.

Em Tocantins, na Serra da Cangalha estão as estruturas de impacto mais bem preservadas em solo brasileiro. Uma formação com aproximadamente 14 km de diâmetro, com anéis concêntricos, formada a menos de 250 milhões de anos, pode ser vista com facilidade em imagens de satélite.

Serra da Cangalha. Cratera de Impacto com 13 km de diâmetro em Tocantins. Dados: Landsat 8/USGS/NASA. Processamento: Wandeclayt M.

Outras grandes estruturas de impacto no Brasil são o Domo de Araguainha, em Mato Grosso, e a Cratera de Colônia, em São Paulo.

Não esperamos que um objeto tão grande quanto o de Yucatán, com potencial para uma nova extinção em massa, esteja em rota de colisão com a Terra. Mas objetos menores, capazes de produzir eventos que causem danos localmente, sobretudo se atingirem zonas densamente habitadas, são abundantes no Sistema Solar atual.

Dimorphos na Caçapa do Meio!


Os programas de monitoramento dos Objetos Próximos da Terra, ou NEOs – na sigla em inglês para Near Earth Objects – buscam e monitoram esses objetos, permitindo determinar seus parâmetros orbitais e propriedades físicas. Esses dados podem garantir que danos sejam mitigados ou mesmo que missões capazes de defletir a órbita de objetos potencialmente perigosos possam ser projetadas e lançadas a tempo de prevenir desastres.

Uma tecnologia de redirecionamento orbital foi testada recentemente com a missão DART (Double Asteroid Redirection Test), lançada pela NASA em novembro de 2021.

A missão DART tinha como objetivo testar e validar o método de redirecionamento orbital através de impacto. Em 26 de setembro de 2022, a DART alcançou o asteroide (65803) Didymos e atingiu com sucesso sua pequena lua Dimorphos.

Imagem do asteroide Didymos e de sua lua Dimorphos capturada pela câmera de navegação da missão DART, dois minutos e meio antes do impacto. A imagem foi capturada a uma distância de 920 km. Créditos: NASA/Johns Hopkins APL.

Colidindo frontalmente com Dimorphos, esperava-se que a DART fosse capaz de “transferir momento” (essa é a forma técnica de dizer que a nave iria alterar a velocidade do pequeno satélite ) para o pequeno corpo, modificando a geometria de sua órbita. É similar ao que acontece com bolas de sinuca, quando uma bola em movimento colide com uma bola parada. A primeira bola pode parar completamente enquanto a segunda bola passa a se mover com a mesma velocidade da primeira.

Geometria do sistema Didymos-Dimorphos, do ponto de vista do Telescópio Espacial Hubble, no instante do impacto. A linha vermelha indica a trajetória da espaçonave DART. A linha laranja indica a direção do Sol. A linha azul é uma projeção do polo norte de Didymos, que também coincide com o polo orbital do sistema. Créditos: Jian Yang Li et al. disponível em: https://doi.org/10.1038/s41586-023-05811-4
As últimas seis imagens enviadas pela câmera DRACO, a bordo da DART, antes do impacto. A imagem no topo à esquerda cobre uma extens˜åo aproximada de 100 m, exibindo Dimorphos quase em sua totalidade. Última imagem completa, ao centro na linha inferior, tem uma resolução de 5.5 cm/pixel cobrindo uma extensão de 28 m na superfície de Dimporphos. Créditos: D. Bekker, C. Ernst, T. Daly, DRACO/APL/NASA.

Observações subsequentes confirmaram que a missão foi um sucesso, reduzindo em 33 minutos o período orbital de Dimorphos em torno de Didymos, passando de aproximadamente 11h55min para 11h22min.

Esse valor supera com larga margem a expectativa inicial de uma redução de 7 minutos no período orbital do sistema.

Objetos Próximos da Terra

É ótimo saber que já temos um método de redirecionamento testado e validado, porque o número total de asteroides próximos catalogados passa de 37 mil, com mais de 11 mil deles com diâmetro superior a 140 m e quase 900 excedendo 1 km.

Desses objetos, cerca de 2500 são potencialmente perigosos.

E se esses números parecem grandes, vale lembrar que nossa capacidade de detecção vem sendo constantemente ampliada e que a entrada em operação de telescópios com campos de visão amplos, dedicados a levantamentos (surveys) que varrerão grandes áreas do céu em noites sucessivas, proporcionarão um salto em nossa capacidade de detecção, com um consequente salto no número de objetos catalogados.

O gráfico abaixo mostra o total acumulado de asteroides próximos da Terra, descobertos até 12 de fevereiro de 2025.

Número acumulado de asteroides próximos da Terra, descobertos até 12 de fevereiro de 2025. Em azul, o total de asteroides. Em laranja, os asteroides com mais de 140 m de diâmetro. Em vermelho, os asteroides com mais de 1 km. Gráfico disponível em https://cneos.jpl.nasa.gov/stats. Acesso em 14 de fevereiro de 2025. Créditos: Alan Chamberlin (JPL/CALTECH).

De olho no 2024 YR4

Classificado até a data de publicação deste post na categoria 3 da escala de Torino, o asteroide 2024 YR4 ocupa o topo da lista de risco de Asteroides Potencialmente Perigosos (PHAs, na sigla em inglês para Potentially Hazardous Asteroids) e você provavelmente vai ver manchetes alarmistas nos sites de notícias e postagens sensacionalistas nas redes sociais. Mas esta classificação não significa que haja um impacto confirmado e de grandes proporções nos esperando.

Diagrama das órbitas dos planetas Mercúrio, Vênus, Terra, Marte e Júpiter. Estas órbitas são aproximadamente circulares. A órbita do asteroide 2024 YR4 está plotada no diagrama como uma elipse que interceptas as órbitas de Marte e da Terra e está totalemnte contida dentro da órbita de Júpiter.
Posição e órbita projetado do 2024 YR4 em 15 de fevereiro de 2025. Simulação realizada com o Orbit Viewer da plataforma JPL/Horizons. https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=2024%20YR4&view=VOP

A escala de Torino combina a probabilidade de impacto (na data desta publicação, calculada em aproximadamente 2%) com a extensão da potencial destruição causada pela colisão. No caso do 2024 YR4, um asteroide com diâmetro estimado em entre 40 e 90 m, a destruição seria restrita às vizinhanças da área do impacto.

Tabela com resumo do risco de impacto do asteroide 2024 YR4 computado com observações no período de 25 de dezembro de 2024 a 8 de fevereiro de 2025. Créditos: CNEOS.

Estes números podem, no entanto, variar bastante com a inclusão de novos dados observacionais coletados com telescópios terrestres até meados do primeiro semestre de 2025 e, após isso, pelo acompanhamento feito por telescópios espaciais infravermelhos.

Após essa janela de observação, o 2024 YR4 voltará a ser observável em 2028 em sua próxma passagem (sem risco de colisão) pelas proximidades da Terra.

O 2024 YR4 foi descoberto em 27 de dezembro de 2024, no Chile, por um dos quatro telescópios da rede ATLAS (Asteroid Terrestrial-impact Last Alert System). Composta por outros três telescópios (2 no Havaí e 1 na África do Sul), a rede ATLAS varre o céu várias vezes por noite em busca de objetos que se movam. Para ter uma ideia da eficiência desse sistema, até a data desta publicação, os telescópios da rede ATLAS já haviam descoberto 98 cometas, 4489 supernovas, 1160 asteroides próximos da Terra (NEAs) e 107 asteroides potencialmente perigosos (PHAs).

Imagens da descoberta do asteroide 2024 YR4 por telescópio do projeto ATLAS no Chile. Créditos: ATLAS.

A notificação emitida pela IAWN (International Asteroid Warning Network) estabelece 22 de dezembro de 2032 como a data para um eventual impacto. Notificações são emitidas para probabilidades de impacto acima de 1%, mas é comum que novas observações levem a uma queda nessa probabilidade.

Não Entre em Pânico!

Embora haja um risco baixo, mas real, de uma colisão no futuro próximo, o acompanhamento deste objeto pelos próximos anos permitirá traçar com menos incerteza sua órbita, definindo se o impacto de fato ocorrerá e quais estratégias de defesa podem ser adotadas. Até lá, cabe aos cientistas, autoridades e à população, garantir o apoio e o investimento contínuo na ciência, sabendo que além dos perigos que encontramos na superfície há ameaças que vem do céu.

Escala de Torino

Nível Zona/Cor Descrição
0 Sem Risco (Branco) A probabilidade de colisão é zero ou tão baixa que é efetivamente zero. Aplica-se também a pequenos objetos como meteoros que se desintegram na atmosfera.
1 Normal (Verde) Descoberta rotineira de objeto que com previsão de passagem próximo à Terra sem risco fora do comum. Observações telescópicas adicionais provavelmente reclassificarão para nível 0.
2 Atenção Astronômica (Amarelo) Encontro próximo mas não incomum. Colisão muito improvável. Merece atenção dos astrônomos, mas não há necessidade de atenção do público e de autoridades.  Observações adicionais provavelmente reclassificarão para nível 0.
3 Atenção Astronômica (Amarelo) Encontro próximo com chance de colisão ≥1% capaz de causar destruição localizada. Observações adicionais provavelmente reclassificarão para nível 0. Atenção do público e de autoridades é necessária se o evento ocorrer em menos de uma década.
4 Atenção Astronômica (Amarelo) Encontro próximo com de chance de colisão ≥1%, capaz de causar devastação regional. Observações adicionais provavelmente reclassificarão para nível 0. Atenção do público e de autoridades é necessária se o evento ocorrer em menos de uma década.
5 Ameaça (Laranja) Risco sério (porém incerto) de devastação regional. Atenção da comunidade astronômica é necessária para determinar conclusivamente se a colisão ocorrerá ou não. Planejamento governamental necessário se o evento ocorrer em menos de uma década.
6 Ameaça (Laranja) Risco sério (porém incerto) de catástrofe global. Atenção da comunidade astronômica é necessária para determinar conclusivamente se a colisão ocorrerá ou não. Planejamento governamental necessário se o evento ocorrer em menos de 30 anos.
7 Ameaça (Laranja) Encontro extremamente próximo com grande objeto, que se ocorrer dentro de um século, ameaça catástrofe global sem precedentes (porém incerta). Planejamento internacional é requerido para determinar conclusivamente e com urgência se a colisão ocorrerá ou não.
8 Colisão Certa (Vermelho) Colisão certa capaz de destruição localizada (terrestre) ou tsunami (oceânico). Frequência média: 1 evento a cada 50 a 1000 anos.
9 Colisão Certa (Vermelho) Colisão certa capaz de devastação regional sem precedentes para colisão em terra ou grande tsunami para colisão no oceano. Frequência média: 1 evento a cada 10.000 a 100.000 anos.
10 Colisão Certa (Vermelho) Colisão certa capaz de catástrofe climática global com potencial para ameaçar o futuro da civilização. Frequência média: menos de 1 evento a cada 100.000 anos.

Referências

[1] – Vasconcelos et al., The Serra da Cangalha impact structure, Brazil: Geological, stratigraphic and petrographic aspects of a recently confirmed impact structure,
Journal of South American Earth Sciences, Volume 45, 2013, Pages 316-330,
ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2013.03.007. Acesso em 12/2/2025.
[2] – Earth Impact Database – http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/SouthAmerica.html. Acesso em 12/2/2025.
[3] – Revista Pesquisa FAPESP, Serra da Cangalha – Marcas de um Meteorito, https://revistapesquisa.fapesp.br/marcas-de-um-meteorito/ . Acesso em 12/2/2025.
[4] – Thomas, C.A., Naidu, S.P., Scheirich, P. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature 616, 448–451 (2023). https://doi.org/10.1038/s41586-023-05805-2
[5] – Cheng, A.F., Agrusa, H.F., Barbee, B.W. et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature 616, 457–460 (2023). https://doi.org/10.1038/s41586-023-05878-z. Acesso em 12/2/2025.
[6] Li, JY., Hirabayashi, M., Farnham, T.L. et al. Ejecta from the DART-produced active asteroid Dimorphos. Nature 616, 452–456 (2023). https://doi.org/10.1038/s41586-023-05811-4. Acesso em 12/2/2025.
[7] Nancy Chabot, Elena Adams, Andy Rivkin, Jason Kalirai. DART: Latest results from the Dimorphos impact and a look forward to future planetary defense initiatives, Acta Astronautica, Volume 220, 2024, 118-125. https://doi.org/10.1016/j.actaastro.2024.04.001. Acesso em 12/2/2025.
[8] J. L. Tonry, L. Denneau, A. N. Heinze, B. Stalder, et al. ATLAS: A High-Cadence All-Sky Survey System. Publications of the Astronomical Society of the Pacific, Volume 130, 988. (2018) http://dx.doi.org/10.1088/1538-3873/aabadf . Acesso em 12/2/2025.
[9] Hannah Ritchie (2022) – “There have been five mass extinctions in Earth’s history” Publicado online em OurWorldinData.org. : ‘https://ourworldindata.org/mass-extinctions‘. Acesso em 15/2/2025.
[9] Urrutia-Fucugauchi, Jaime, Camargo-Zanoguera, Antonio, Pérez-Cruz, Ligia, Pérez-Cruz Guillermo . The Chicxulub multi-ring impact crater, Yucatan carbonate platform, Gulf of Mexico. Geofísica Internacional. 2011, 50(1), 99-127. ISSN: 0016-7169. Disponível em: https://www.redalyc.org/articulo.oa?id=56820060007. Acesso em 18/2/2025.

Cite esta publicação:
Wandeclayt M. (2025) - “A Ameaça Vem do Céu” Publicado online em CeuProfundo.com. Acessado em: 'https://www.ceuprofundo.com' [Recurso Online]

@article{ameacaNEO,
    author = {Wandeclayt M.},
    title = {A Ameaça Vem do Céu},
    journal = {Céu Profundo},
    year = {2025},
    url = {https://ceuprofundo.com}
}

Cometa no radar: como observar o C/2024 G3 (ATLAS)

A temporada de cometas de 2025 começou cedo! O cometa C/2024 G3 (ATLAS) fez uma espetacular passagem pelo campo de visão do telescópio solar espacial SOHO entre os dias 12 e 14 de janeiro, exibindo uma magnífica cauda e nos deixando com água na boca para fazer imagens também a partir do solo.

Vídeo do Cometa C/2024 G3 (ATLAS) gerado a partir de imagens do telescópio solas espacial SOHO (NASA/ESA)

A imagem abaixo, com cores falsas, gerada a partir dos dados da câmera LASCO C3 a bordo do telescópio espacial SOHO mostra a cauda do C/2024 G3 (ATLAS) curvando-se enquanto o cometa contorna o Sol durante sua passagem pelo periélio.

Frustrando as expectativas de observadores na maior parte do Brasil, nuvens turvaram por vários dias após a passagem do cometa pelo periélio. Em São José dos Campos, apenas nesta segunda (20/1) tivemos o horizonte oeste suficientemente desobstruído para podermos imagear um dos cometas mais brilhantes do século.

Na imagem abaixo, capturada através de objetiva de 85 mm de distância focal e relação focal f/1.5, temos uma visão muito próxima do que observamos a olho nu. Sem dificuldade pudemos identificar o cometa e resolver sua cauda aproximadamente meia hora após o pôr do Sol.

Cometa C/2024 G3 (ATLAS) fotografado em São José dos Campos (SP) com objetiva de 85mm. Esta é a imagem mais próxima visão a olho nu do cometa na segunda 20/1. Créditos: Wandeclayt M./@ceuprofundo

A fotografia com teleobjetivas revela ainda mais detalhes da estrutura da cauda do cometa. A imagem abaixo, capturada através de teleobjetiva fixa de 300 mm f/2.8, num frame único, mostra a complexidade da cauda. Detalhes ainda mais sutis podem ser resolvidos através do empilhamento de múltiplos frames, quando as condições da atmosfera permitem uma sequência maior de imagens. Em nosso caso, tivemos apenas uma breve janela entre as nuvens que concentravam na direção do horizonte oeste.

Cometa C/2024 G3 (ATLAS) fotografado em São José dos Campos (SP) com objetiva de 300mm. Créditos: Wandeclayt M./@ceuprofundo

Por último, nos surpreendemos com a faixa de poeira visível através do telescópio. Em um frame único, com um leve processamento para aumento do contraste, capturado através de telescópio Schmidt Cassegrain de 203 mm f/10, pudemos capturar a imagem abaixo. A região do núcleo do cometa não é visível e pode estar oculta pela poeira.

Cometa C/2024 G3 (ATLAS) fotografado em São José dos Campos (SP) com câmera DSLR através de telescópio Schmidt Cassegrain Celestron Nexstar SE8. Créditos: Wandeclayt M./@ceuprofundo

Como encontrar o cometa?

Embora as imagens impressionem, a experiência realmente memorável é poder ver um cometa tão brilhante a olho nu. Se a meteorologia for favorável em sua localização, não perca a oportunidade de observar o C/2024 G3 (ATLAS). Para encontrá-lo, olhe na direção do poente aproximadamente meia hora após o pôr do Sol. Se tiver dificuldade para detectá-lo, tente usar a técnica da visão periférica: não olhe diretamente para a direção do cometa. Em vez disso, use o canto do olho para tentar perceber um borrão alongado no céu.

O mapa abaixo foi confeccionado para a latitude de São José dos Campos, mas pode ser utilizado em outras localidades, usando Vênus e a estrela Formalhaut como referência.

Mas se é imagem que você quer, não é só com telescópios e câmeras DSLR que podemos capturar detalhes do cometa. A imagem abaixo, registrada por nosso colaborador Matheus Queiroz no Distrito Federal é um exemplo do que podemos obter com um celular e binóculos (Adicione além dos instrumentos experiência, dedicação e paixão pela astronomia e certamente você vai acabar conseguindo resultados como esse).

Cometa C/2024 G3 (ATLAS) registrado com celular através de binóculos astronômicos. Créditos: Matheus Queiroz.

O C/2024 G3 é uma bela surpresa já no primeiro mês de 2025. Mas o ano está apenas começando e esperamos que vocês sigam nos acompanhando e compartilhando o céu que tanto nos fascina. Torcemos para que outros cometas brilhantes possam os surpreender e se juntar aos eventos previstos e que publicamos a cada mês em nosso calendário astrônomico. Mas mesmo que mais nenhum cometa salte aos nossos olhos, já tivemos um espetáculo inesquecível para iniciar o ano!

Alerta de Cometa: C/2024 G3 (ATLAS) abre a temporada de cometas 2025

Imagem do cometa C/2024 G3 (ATLAS) capturada pelo observatório espacial SOHO. O cometa surge na borda da imagem, como um ponto brilhante seguido por uma cauda em forma de leque. Na área central, um anteparo escuro esconde o Sol.
Cometa c/2024 G3 (ATLAS) registrado pela câmera LASCO C3 do telescópio solar espacial SOHO (NASA/ESA) em 11 de janeiro de 2025, dois dias antes da passagem do cometa pelo periélio. A região escura na imagem é um anteparo que oculta o Sol, gerando um eclipse artificial para as imagens do SOHO. O Sol está na região central da imagem. [Imagem processada por Wandeclayt M. a partir de dados brutos da câmera LASCO C3]

Descoberto em abril de 2024 e com sua órbita quase que inteiramente ao sul da eclíptica, o cometa C/2024 G3 (ATLAS) é o presente que os observadores no hemisfério sul esperavam!

Além do espetáculo proporcionado pelos planetas durante o mês de janeiro, um cometa brilhante é sempre motivo para euforia na astronomia amadora e desta vez, se a meteorologia nos ajudar, o Brasil será um camarote privilegiado para a observação deste visitante dos confins do Sistema Solar. E este privilégio é consequência da inclinação da órbita do cometa, mantendo-o no hemisfério sul celeste após a passagem pelo periélio.

Órbita do cometa C/2024 G3 gerado no visualizador Orbit Viewer da plataforma JPL Horizons.

Curva de Brilho

Durante a última semana de dezembro e primeira semana de janeiro, o C/2024 G3 (ATLAS) foi um alvo difícil ao amanhecer em meio a persistentes nuvens em muitas regiões do Brasil. Mas observadores ao redor do mundo seguiram monitorando sua evolução e reportando seu promissor aumento de brilho.

Curva de brilho do cometa C/2024 G3 (ATLAS) com dados reportados à plataforma COBS [dados/gráfico: COBS]

Agora nos resta esperar que o cometa sobreviva a sua passagem pelo ponto de sua órbita mais próximo do Sol, o periélio, para que possa emergir em seguida no céu do entardecer com brilho suficiente para que possa ser visto sem esforço através de pequenos telescópios e binóculos, ou quem sabe, a olho nu.

Como encontrá-lo?

Para localizá-lo, olhe para o poente, logo após o pôr do Sol, a partir do dia 14 de janeiro, ligeiramente ao Sul do ponto em que o Sol se pôs. O mapa abaixo mostra a trajetória do cometa ao logo de todo o mês de janeiro, realçando a posição do Sol e do cometa no dia da passagem pelo periélio (13/01)

Posição do cometa C/2024 G3 (ATLAS) durante o mês de janeiro de 2025. [gráfico: Wandeclayt M./@ceuprofundo]

Estamos apenas em janeiro, mas este já é um fore candidato ao título de cometa do ano! Estaremos de olho em sua evolução e com câmeras e telescópios apontados em sua direção. Fiquem de olho aqui no blog e em nossas redes sociais para dicas de observação e notícias de última hora! O ano apenas começou, mas o céu não vai esperar o carnaval para desfilar seus astros brilhantes em frente aos telescópios.

Afinal, quanto dura um ano?

Aparentemente falta pauta nas redações no final do ano. E falta também uma boa consultoria sobre astronomia, até para os grandes portais de notícia que sempre requentam e republicam a mesma matéria, fazendo confusão entre períodos orbitais distintos e alardeando, incorretamente, que o ano não acaba no dia 31 de dezembro. Mas isso levanta a questão: afinal, quanto dura um ano?

2024 acabou, e o primeiro anoitecer de 2025 em São José dos Campos (São Paulo) foi ornado pela Lua, Vênus e Saturno. [imagem: Wandeclayt M./@ceuprofundo]

Pra começo de conversa, o ano civil acaba sim em 31 de dezembro. O 31 de dezembro não é uma data com significado astronômico especial, mas a duração do ano obedece sim critérios astronômicos.

Uma rápida consulta nos mecanismos de busca mostram que todos os anos uma confusão sobre a duração do ano toma as manchetes dos portais de notícia.

Mas afinal qual a duração do ano.

Se queremos saber quanto dura um ano, precisamos entender um pouco do que são as órbitas planetárias.

As órbitas dos objetos do Sistema Solar são regidas pela força da gravidade. Uma força tão bem conhecida que nos permite até descobrir novos objetos apenas medindo seus efeitos.

Urano foi descoberto através de observações telescópicas por William Herschel em 1781. Mas perturbações em sua órbita revelaram que existia um outro planeta além de sua órbita. Foi assim que Netuno foi descoberto em 1846.

Trabalhando independentemente, Urbain Le Verrier na França e John Couch Adams na Inglaterra, calcularam a posição de um planeta até então desconhecido, que produziria o desvio observado na órbita de Urano.

O astrônomo John Galle, do Observatório de Berlim, encontrou o planeta que hoje conhecemos como Netuno, a apenas 1º da posição prevista por Le Verrier.

Mas décadas antes da teoria da gravitação de Newton, Johanes Kepler já havia descoberto empiricamente como os planetas se movem.

Para exemplificar, veja a órbita de Mercúrio, na imagem abaixo.

Notou que a órbita não é um círculo perfeito? Ela é levemente achatada e o Sol não fica no centro .

Esse “círculo achatado” se chama elipse e a posição do Sol é um dos “focos” dessa elipse. O ponto marcado com a letra C é o centro da elipse. E o ponto marcado como F2 é o segundo foco, onde não há nenhum objeto.

Essa geometria faz com que haja um ponto da órbita em que o planeta esteja mais próximo do Sol e um ponto em que esteja mais distante.

Esses pontos extremos possuem nomes: Periélio, quando o planeta está mais próximo do Sol. Afélio, quando está mais distante.

O Ano Anomalístico

Você pode estar pensando que essa é uma boa maneira de estabelecer quanto dura um ano. Poderíamos estabelecer que um ano é o período entre duas passagens sucessivas por um desses pontos da órbita. O periélio, por exemplo. É essa a ideia veiculada nas notícias de início de ano.

Porém, isso é algo bem difícil de perceber na prática.

É possível sim usar esse período para definir quanto dura um ano. E de fato ele é usado para definir o que chamamos de Ano Anomalístico.

Mas a órbita da Terra é muito menos achatada que a de mercúrio. E sem a ajuda de instrumentos é impossível perceber que estamos um pouco mais perto do Sol. Em 2025, o Sol passou pelo periélio no dia 4 de janeiro às 10:29h, a pouco mais de 147 milhões de km do Sol.

E você certamente não notou nada de diferente.

No dia 3 de julho, passaremos pelo ponto mais distante, o afélio, a pouco mais de 152 milhões de km. O afélio também é vítima de publicações sensacionalistas e INCORRETAS que viralizam todo ano. Mas você pode se vacinar lendo outro post aqui no blog: https://ceuprofundo.com/2022/05/21/alerta-de-boato-o-que-e-o-afelio/

Mas a verdade é que você também não vai notar a passagem pelo afélio. A diferença entre afélio e periélio é realmente muito pequena.

O Ano Sideral

Mas se a passagem do Sol pelo periélio não é uma maneira muito prática de definir quanto dura um ano, que tal usar como referência as estrelas distantes? Poderíamos medir o tempo entre dois alinhamentos sucessivos do Sol com alguma estrela fixa. Isso é algo razoavelmente fácil de determinar. E o período medido dessa forma é o que chamamos de Ano Sideral.

É sim uma boa maneira de medir o tempo. Mas talvez não tenha grandes consequências práticas. Não faz diferença se o Sol passar um pouco antes ou um pouco depois por esse alinhamento, faz?

Talvez precisemos de uma maneira de medir o ano que tenha mais impacto em nossas vidas.

O Ano Trópico

E se, em vez do periélio ou do alinhamento com alguma estrela, nossos calendários fossem sincronizados com acontecimentos astronômicos mais relevantes? Eventos que nos permitissem prever a temperatura e as chuvas. Ou que tivessem impacto em nosso planejamento para plantar, colher ou nos proteger das intempéries? Quem sabe poderíamos usar o ciclo das estações para isso? Construindo um calendário que mantém fixo o início das estações, temos controle do início da estação chuvosa, da chegada do frio ou do calor, da estiagem ou das inundações… é um calendário realmente útil e prático.

É por isso que faz todo sentido que a duração do ano civil coincida com a duração do ciclos das estações.

O Ano Trópico corresponde ao período entre dois equinócios vernais (no hemisfério sul, isso equivale ao início do outono).

Mas um ano não é um ano?

Bem… tudo seria mais fácil se a Terra fosse uma esfera perfeita. E se Lua e os outros planetas no Sistema Solar não perturbassem nossa órbita.

Mas a realidade está longe de ser uma aula de física do ensino médio, onde o professor pode propor um problema em que um elefante tem massa desprezível e desliza sem atrito sobre o asfalto…

Na prática, há efeitos que perturbam as órbitas (Júpiter, por ser o planeta mais massivo, e a Lua por estar muito perto de nós, produzem as maiores perturbações) e que fazem eixo da Terra cambalear como um pião. O resultado disso é que o ano trópico, o ano sideral e o ano anomalístico acabam tendo durações diferentes, porque esses pontos de referência se deslocam de um ano pra outro. No fim das contas, cada ano acaba tendo uma duração diferente.

A nossa escolha para a duração do ano é a que coincide com o ciclo das estações. O Ano Trópico. Então pode esquecer cada uma dessas matérias que dizem que “segundo a ciência” o ano só começa em 4 de janeiro. O ANO CIVIL NÃO É MEDIDO EM RELAÇÃO AO PERIÉLIO!

Sim, mas afinal quanto dura um ano??

Agora sim podemos falar sobre a duração de cada um desses anos.

AnoDuração Média
Sideral365,2564 dias
Anomalístico365,2596 dias
Trópico365,2422 dias
Duração média dos principais tipos de ano. [Fonte: Astronomical almanac for the year 2015 (United States Naval Observatory, United Kingdom Hydrographic Office)]

Esse tema é realmente rico, mas você pode ler mais sobre calendários e sobre a definição de cada um desses períodos no Explanatory supplement to the Astronomical almanac.

A duração média do Ano Trópico é de 365,2422 dias. Isso é um pouco menos que 365 dias e 6 horas. Mas esse pouco tem consequências… Foi isso que motivou uma mudança de calendário no ano 1582 em uma bula papal editada pelo Papa Gregório XIII.

Com o objetivo de manter a data do equinócio de março fixa, uma nova regra para adoção dos anos bissextos precisou ser estabelecida.

O calendário gregoriano.

Ao acrescentar 1 dia a cada quatro anos, correspondendo às 6 horas que excediam os 365 dias no calendário vigente (o Calendário Juliano), um erro foi acumulado deslocando a data do início da primavera do hemisfério norte (o equinócio de março).

A data do equinócio é importante no calendário do Vaticano para determinar o dia da Páscoa e o período de jejum. A Páscoa corresponde ao domingo após a primeira Lua Cheia que ocorre após o equinócio de março. E se a data do equinócio varia, todas essas datas móveis também se deslocam.

Na correção que resultou no calendário gregoriano, primeiro foram excluídos 10 dias do calendário: em 1582, nos países que adotaram imediatamente o calendário gregoriano, a quinta-feira 4 de outubro foi seguida pela sexta-feira 15 de outubro.

E uma nova regra para os anos bissextos foi estabelecida: 1 dia é acrescentado se o ano for divisível por 4, mas ele não é acrescentado se o ano for divisível por 100, exceto se também for divisível por 400.

Acabou se perdendo nas contas? A gente simplifica: os séculos cheios não são bissextos, exceto se forem múltiplos de 400. Ou seja: 1600 e 2000 foram bissextos. 1700, 1800 e 1900, não. Todos os outros múltiplos de 4 foram. 2100, 2200 e 2300 não serão bissextos. 2400 será. E assim por diante…

Essa correção garante que o calendário permanecerá sincronizado com o início das estações por mais de 3 milênios. É realmente uma correção muito boa, mas infelizmente não impede que influenciadores digitais e portais de notícia continuem dizendo que o ano não acabou em 31 de dezembro.

Alinhamento dos Planetas (É Raro, mas Acontece Muito!)

A Lua e seis planetas registrados simultaneamente na mesma imagem em 25 de junho de 2022. Saturno estava visível no céu, mas fora do campo da imagem. Urano e Netuno não são visíveis a olho nu. [Wandeclayt M./@ceuprofundo].

Você já deve ter esbarrado em postagens nas redes sociais alardeando um raríssimo alinhamento dos planetas que ocorreria em algum momento de 2025, não? Então esse post é pra você!

Precisamos falar um pouco sobre isso! Mas primeiro vamos esclarecer alguns conceitos astronômicos pra alinhar nossa conversa.

Alinhamento dos Planetas x Conjunção

A imagem que abre este post mostra 6 planetas e a Lua simultaneamente na mesma imagem. Saturno também estava visível no céu, mas estava fora do campo da câmera. É fácil notar que todos esses objetos estão aproximadamente sobre a mesma linha. E isso não é uma coincidência!

Os planetas Marte e Júpiter no alto da imagem, ao amanhecer, com a Lua e Vênus visíveis próximos do horizonte, sobre a Universidade do Vale do Paraíba (UNIVAP) em São José dos Campos. Imagem registrada na madrugada de 25 de maio de 2022. [Wandeclayt M./@ceuprofundo].

Todos os planetas orbitam o Sol aproximadamente no mesmo plano, então sempre os veremos próximos da linha que conhecemos como eclíptica. A eclíptica desenha no céu, o plano da órbita terrestre em torno do Sol.

Assim, veremos sempre os planetas alinhados. Formando esse cortejo no céu. No entanto, este alinhamento dos planetas não é uma CONJUNÇÃO.

Então, o que seria uma “Conjunção“?

Conjunções entre a Lua e os planetas, como esta entre Lua e Vênus (os dois objetos mais brilhantes na imagem), registrada em 05 de outubro de 2024, na direção da constelação de Libra, não são eventos raros. Mas testemunhar este encontro no céu do maior observatório astronômico em solo brasileiro torna este um evento especial. Sobre a cúpula do telescópio Perkin-Elmer de 1,60m vemos ainda a esplendorosa região central da Via Láctea. [Wandeclayt M./@ceuprofundo]

Quando vemos um objeto do Sistema Solar na mesma direção de outro objeto, que pode ou não ser do Sistema Solar, dizemos que esses objetos estão em conjunção. Ou seja, ambos estão posicionados ao longo de nossa linha de visada. Na imagem acima, vemos uma conjunção entre Vênus e a Lua.

A cada mês, por exemplo, ao orbitar a Terra, a Lua emparelhará com cada um dos planetas e com algumas estrelas brilhantes. Em nosso calendário astronômico mensal, sempre indicamos essas conjunções entre a Lua e planetas e estrelas.

Em geral, não há nada de raro nessas conjunções, que sempre acontecem a cada mês. No entanto, em algumas ocasiões o alinhamento dos planetas com a Lua é tão perfeito que a Lua chega a ocultar o objeto mais distante, como na imagem abaixo, quando a Lua ocultou Marte na madrugada de 6 de setembro de 2020. Em 2020, duas ocultações de Marte foram visíveis de parte do Brasil.

Ocultação de Marte pela Lua em 6 de setembro de 2020, registrada através do telescópio de 0,30 m do Observatório da UNIVAP, em São José dos Campos (SP). [Wandeclayt M./@ceuprofundo]

Você agora entendeu o conceito mais importante deste post: numa conjunção, temos um alinhamento dos planetas ou de outros astros ao longo de nossa linha de visada.

Sem alinhamento dos planetas não tem nada legal pra ver no céu?

Tem muita coisa legal pra ver no céu sim! Mas o Universo é um lugar bem grande e sempre tem algo fascinante pra ser observado. Uma conjunção é certamente um belo evento, mas observar os planetas separados também é uma experiência que não dispensamos! No início de Janeiro poderemos ver a Lua pouco depois da fase nova emparelhando com Vênus e Saturno no céu.

A simulação abaixo mostra a conjunção de Lua e Vênus no anoitecer do dia 3 de janeiro. Mas a cada dia, a Lua se desloca um pouco para leste e seguirá emparelhando com cada um dos planetas. Marte, Júpiter, Saturno e Vênus seguirão visíveis durante todo o mês de Janeiro, então se é alinhamento dos planetas que você quer, que tal observar a Lua em conjunção com cada um deles?

Marte, Júpiter, Saturno, Vênus e a Lua visíveis simultaneamente no céu no dia 3 de janeiro de 2025. A linha laranja é a eclíptica, a linha que marca o plano da órbita terrestre em torno do Sol. Todos os planetas possuem órbitas em planos similares e aparecem sempre próximos à eclíptica. Simulação no software livre Stellarium. [Wandeclayt M./@ceuprofundo].

Utilizando o visualizador de órbitas do sitema Horizons do Laboratório de Propulsão a Jato da NASA, criamos essa visualização do sistema solar no dia 3 de janeiro, correspondendo a simulação acima. Podemos ver que os planetas orbitam aproximadamente no mesmo plano, mas que não estão alinhados.

E a moral da história?

A conclusão que podemos tirar não é exatamente uma novidade: tem muita gente falando bobagem e postando conteúdo sensacionalista sobre astronomia nas redes sociais para ganhar cliques (e dinheiro). Mas, felizmente, o Universo não precisa de sensacionalismo para ser um lugar sensacional!

Procure um lugar escuro, longe da poluição luminosa dos centros urbanos, e deleite-se com as belezas do céu. Mas nem precisa de telescópio pra isso. Um céu escuro pode revelar a olho nu dezenas de objetos de céu profundo, como nebulosas, aglomerados estelares e até algumas galáxias mais próximas.

Com binóculos a experiência é ainda mais recompensadora, mergulhando em objetos mais extensos que sequer cabem inteiros no campo da ocular de um telescópio. Inclusive, binóculos são os instrumentos ideais para a observação de cometas (permitindo que vejamos uma grande extensão de sua cauda) e de conjunções planetárias, já que é incomum que os planetas fiquem próximos o suficiente para serem vistos simultaneamente através de um telescópio.

Marte, Júpiter e o aglomerado aberto das Híades, na direção da constelação de Touro, em agosto de 2024. [Wandeclayt M./@ceuprofundo]

Calendário Astronômico: Janeiro 2025

Calendário Astronômico

Efemérides foram computadas usando as bibliotecas astropy e astroquery em Python e o software Occult v4.

Data e Hora    | Evento

2025/01/01 09h | Plutão 1.0°N da Lua (Ocultação)*
2025/01/03 13h | Vênus 1.3°N da Lua
2025/01/04 06h | Terra no periélio
2025/01/04 13h | Saturno 0.6°S da Lua (Ocultação)**
2025/01/05 11h | Netuno 1.0°S da Lua (Ocultação)
2025/01/06 20h | QUARTO CRESCENTE
2025/01/07 20h | Lua no perigeu
2025/01/09 11h | Urano 4.3°S da Lua
2025/01/10 00h | Vênus na máxima elongação a leste (47°)
2025/01/10 19h | Júpiter 5.4°S da Lua
2025/01/12 01h | Lua mais ao norte (28.5°)
2025/01/12 10h | Marte mais próximo da Terra
2025/01/13 18h | Pólux 2.1°N da Lua
2025/01/13 19h | LUA CHEIA
2025/01/14 00h | Marte 0.2°S da Lua (Ocultação)*
2025/01/15 23h | Marte em oposição
2025/01/16 14h | Régulo 2.0°S da Lua
2025/01/18 23h | Vênus 2.2°N de Saturno
2025/01/21 01h | Spica 0.1°N da Lua (Ocultação)
2025/01/21 02h | Lua no apogeu
2025/01/21 09h | Plutão em conjunção
2025/01/21 17h | QUARTO MINGUANTE
2025/01/22 18h | Marte 2.4°S de Pólux
2025/01/24 21h | Antares 0.3°N da Lua (Ocultação)
2025/01/26 10h | Lua mais ao sul (-28.5°)
2025/01/28 18h | Mercúrio 2.4°N da Lua
2025/01/28 19h | Plutão 0.9°N da Lua (Ocultação)
2025/01/29 04h | Mercúrio 1.4°N de Plutão
2025/01/29 09h | LUA NOVA
2025/01/30 15h | Urano estacionário
2025/01/31 19h | Saturno a 4° da Lua ao anoitecer.

* Não visível do Brasil.
** Visível de parte do Brasil. Consulte mapa abaixo.

O Céu em Janeiro – Destaques do Mês.

A Lua se põe no Lajedo de Soledade em Apodi – RN, enquanto a constelação de Órion ainda reina no céu de verão. Júpiter é o ponto mais brilhante no centro da imagem. 2024-12-13. [Wandeclayt M./@ceuprofundo]

Antes de tudo, vamos dizer em letras garrafais: NÃO VAI OCORRER NENHUMA MEGA CONJUNÇÃO PLANETÁRIA EM 2025! Apesar do que anda circulando em alguns perfis sensacionalistas nas redes sociais, o Sistema Solar não está passando por nenhuma configuração especial e super rara com todos os planetas em conjunção! Confira aqui a configuração do Sistema Solar no mês de Janeiro.!

Mas isso não significa que você não vai observar os planetas neste início de ano, não é? Apesar de não estarem agrupados, os planetas estão no céu e ao alcance da vista desarmada e de pequenos telescópios. Os destaques vão para os planetas Júpiter, brilhando intensamente na direção da constelação de Touro e para o planeta Marte, que atinge a oposição no dia 15 de janeiro. A oposição é o condição mais favorável para a observação de planetas com órbitas exteriores à da Terra. É quando a Terra passa entre o planeta e o Sol, fazendo com que o planeta seja visível durante toda a noite!

Vênus também brilhará em todo seu esplendor ao anoitecer, atingindo sua máxima separação do Sol no dia 10 de janeiro. Quer um desafio? Vênus estará tão brilhante que poderá inclusive ser visto a olho nu durante o dia! Tente encontrá-lo com o Sol ainda brilhante!

Além disso, um visitante dos confins do Sistema Solar vem dar as boas vindas ao ano novo. O cometa C/2024 G3 (ATLAS) passará pelo ponto de sua órbita mais próximo ao Sol no dia 13 de janeiro. É provável que ele se torne um alvo fácil para binóculos, pequenos telescópios e câmeras. Mas não podemos descartar a chance de conseguir detectá-lo a olho nu. A boa notícia é que sua posição é favorável para a observação no hemisfério sul. Confira a carta celeste mais abaixo para seguir sua trajetória durante o mês de janeiro.

Infelizmente um belo evento não poderá ser visto do Brasil: a ocultação de Saturno pela Lua em 4 de janeiro poderá ser observada de toda a Europa e de parte do norte da África ocidental. Mas para o Brasil, além de acontecer durante o dia, apenas uma estreia faixa ao norte do País está dentro da área de visibilidade da ocultação.
Ainda assim, observadores nessa faixa brasileira mais ao norte podem tentar registrar telescopicamente a ocultação. Para isso, teste alguns dias antes se você é capaz de observar Saturno com a luz do dia usando seus instrumentos. Se esse teste der certo, coloque as mãos à obra! E compartilhe conosco os resultados!

Mapa de visibilidade da ocultação de Saturno pela Lua em 4 de Janeiro de 2025. A ocultação é integralmente vista da Europa, incluindo a Península Ibérica. No Norte e parte do Nordeste do Brasil, a ocultação ocorre durante o dia. [mapa: Occult V4]

Os planetas em Janeiro/2025

Marte, Júpiter, Vênus e Saturno estarão em condições muito favoráveis para a observação durante todo o mês de Janeiro. Para observadores munidos de telescópios, Urano e Netuno também manterão um bom afastamento do Sol durante todo o mês. Vênus, Saturno, Júpiter e Marte poderão ser vistos simultaneamente no céu. Isso não é uma configuração especialmente rara e nem de longe corresponde ao super alinhamento alardeado em vídeos virais em redes sociais. Na verdade, os planetas estarão bem separados angularmente entre si, com apenas uma conjunção mútua merecendo atenção: Vênus estará a pouco mais de 2º Saturno no dia 18/01.

Para acompanhar a movimentação de todos os planetas durante o mês, clique na imagem para ampliar.

Configurações do Sistema Solar em Janeiro/2025

Os diagramas abaixo mostram a configuração dos planetas interiores e exteriores do Sistema Solar ao longo do mês de dezembro, em coordenadas heliocêntricas. Os gráficos apresentam o Sistema Solar visto do norte do plano da órbita terrestre.

Satélites de Júpiter

Configuração dos satélites galileanos em janeiro/2025 [https://pds-rings.seti.org/tools/tracker3_jup.shtml]

Anéis de Saturno

Configuração dos anéis de Saturno em 15 de novembro. [https://pds-rings.seti.org/tools/viewer3_sat.shtml]

Lajedo de Soledade: Tesouro Arqueológico, Paisagístico e Astronômico.

Vista aérea de uma região rochosa, esculpida por intemperismos. O Sol está no horizonte, começando a iluminar a paisagem. Há um canal (ravina) seprando grnades blocos de rochas na imagem. Vegetação seca se distribui no fundo da ravina e também ao longo do horizonte.
Os primeiros raios do Sol no amanhecer sobre as ravinas do Lajedo de Soledade. [imagem: Wandeclayt M./@ceuprofundo].

Um afloramento calcário de 90 milhões de anos no sertão do Rio Grande do Norte é uma testemunha de quando o sertão já foi mar e abriga um vasto acervo de pinturas rupestres e ainda é coberto por um deslumbrante céu estrelado! Um verdadeiro tesouro arqueológico, paisagístico e astronômico

Este é o Lajedo de Soledade, na cidade de Apodi, a 350 km de Natal e pouco menos de 100 km de Mossoró!

O Lajedo de Soledade é um destino onde história, geologia, astronomia e preservação dão as mãos ao turismo sustentável. E foi este o sítio que escolhemos para observar o pico da chuva de meteoros Geminídeos de 2024.

Um céu estrelado, com uma faixxa clara cortando a imagem diagonalmente. A faixa é a nossa galáxia, a Via Láctea. Um pequeno traço aparece num canto superior, formado pela passagem de um meteoro. Na parte baixo, uma formação rochosa iluminada pela Lua e algumas árvores delgadas.
Vista ao sul, de dentro do Lajedo de Soledade, com a Via Láctea cruzando o céu na diagonal da imagem. As estrelas Alfa (Canopus) e Beta (Miaplacidus) da constelação da Carina são as mais brilhantes na imagem. Um meteoro foi capturado na borda superior direita da imagem. [imagem: Wandeclayt M.]

Todos os anos, durante o mês de dezembro, a Terra atravessa uma região rica em detritos do asteroide 3200 Phaeton. São esses detritos que, ao entrar em nossa atmosfera, formam os meteoros da chuva Geminídeos. Nas madrugadas dos dias 13 e 14, cruzamos a região de maior densidade desses detritos, o que corresponde ao pico de atividade dos meteoros, numa taxa que pode atingir 150 meteoros por hora em condições perfeitas.

No entanto, para a chuva de 2024, as condições estiveram longe da perfeição: às vésperas da Lua Cheia, o brilho lunar ofusca a maior parte dos meteoros e durante toda a noite de observação pudemos contar aproximadamente 40 meteoros.

Mas com ou sem meteoros, nossa escolha de sítio foi garantia de uma experiência rica e satisfatória à noite e até após o nascer do Sol.

Um gráfico com as órbitas dos planetas Mercurio, Venus, Terra e Marte. Além dos planetas, uma órbita bastante alongada, que chega a penetrar a órbita de Mercúrio e que se afasta além da órbita de Marte mara a trajetória do asteroide 3200 Phaeton, o corpo responsável pela chuva de meteoros Geminídeos.
Posição da Terra na madrugada de 13/12/2024, cruzando a órbita do asteroide 3200 Phaeton. Órbita simulada no sistema JPL Horizons.

A chuva de meteoros pode não ter sido a edição mais impressionante dos Geminídeos, mas o sítio do Lajedo de Soledade não deixou nada a desejar! Passada a noite de observação, pudemos nos concentrar na beleza das formações geológicas e nos muitos painéis de pinturas rupestres que se concentram na área preservada do sítio!

Visitando o Sítio Arqueológico!

As visitas ao sítio arqueológico podem ser feitas de terça a domingo, com acompanhamento de guias da Fundação Amigos do Lajedo de Soledade (FALS). Os detalhes sobre o acesso ao museu e a contratação de guias podem ser consultados no site https://lajedodesoledade.org.br/

Fachada do Museu Arqueológico do Lajedo de Soledade.
Museu Arqueológico do Lajedo de Soledade [imagem: Wandeclayt M./@ceuprofundo]

O acesso aos painéis é fácil e não requer nenhuma trilha longa. Os guias da FALS conhecem muito bem cada um dos painéis localizados no labirinto de ravinas esculpidas pela erosão no Lajedo, além de possuírem um vasto repertório sobre a geologia e a história da região. O circuito pode ser feito em pouco mais de uma hora, mas não descuide da hidratação e do filtro solar. O passeio pode ser curto, mas o Sol do sertão potiguar faz essa caminhada ser exaustiva.

Um dos mais interessantes painéis na Ravina da Dodora exibe inscrições que nos remetem ao céu estrelado e a objetos astronômicos. Inevitável pensar que a Astronomia possa ter sido uma inspiração para essas pinturas quando vemos o céu sobre a Ravina, como na imagem abaixo. [imagem: Wandeclayt M./@ceuprofundo]
A Ravina da Dodora emoldura o céu estrelado sobre o Lajedo de Soledade. Na imagem, a estrela mais brilhante é Sírius, na constelação do Cão Maior. A constelação de Órion, com as Três Marias e com a grande nebulosa M42, aparece acima da Carnaúba, uma palmeira endêmica do semi-árido nordestino. [imagem: Wandeclayt M./@ceuprofundo]

Além de painéis pintados com motivos geométricos (e possivelmente astronômicos) há representações da fauna (aves e lagartos são facilmente identificáveis) como na Ravina das Araras e painéis com gravações em baixo relevo.

Pinturas rupestres na Ravina das Araras (Lajedo de Soledade). [Imagem: Wandeclayt M./@ceuprofundo]
Gravações em baixo relevo (tradição itacoatiara) no Lajedo de Soledade. [imagem: Wandeclayt M./@ceuprofundo]

Um Panorama de Encher os Olhos

Mas não deixe o deslumbramento com as pinturas rupestres impedir você de se deleitar com a visão mais ampla de todo o sítio. Os intrincados detalhes esculpidos na rocha calcária pelo tempo e a resiliente vegetação da caatinga, o mais brasileiro e nordestino dos biomas, compõem um espetáculo que também precisa ser desfrutado.

Vista panorâmica do Lajedo de Soledade. As rochas são recortadas em complexos padrões e á um leito seco de rio no centro da imagem.
Vista panorâmica aérea do Lajedo de Soledade [imagem: Wandeclayt M./@ceuprofundo]
Wandeclayt do Projeto Céu Profundo, de barba e óculos, vestindo camiseta preta e chapéu. Henrique, guia do Lajedo, vestindo camiseta branca. Os dois homens olham na direção da câmera e se encontram sobre as rochas do Lajedo.
Fim de visita com o guia Henrique, da Fundação Amigos do Lajedo de Soledade. Experiência arqueológica e geológica, após a noite astronômica, fechando com chave de ouro nossa passagem pelo Sertão Potiguar. [imagem: Wandeclayt M./@ceuprofundo]
Vista aérea do Lajedo, com uma cor predominantemente acinzentada e cortado por linhas aproximadamente retas, correspondendo a marcas de erosão na formação.
Vista aérea do afloramento calcário do Lajedo de Soledade. [imagem: Wandeclayt M./@ceuprofundo]

Este foi sem dúvida um dos sítios mais fascinantes que já visitamos. Uma paisagem que nos leva numa viagem no tempo e no espaço. Um local de clima severo, onde o calor do Sol castiga, mas o calor humano dos guias e da população nos fazem querer retornar correndo para os encantos de Soledade.

Ministramos uma breve instrução de reconhecimento de céu nas ravinas do Lajedo de Soledade. Entre os participantes, a ilustre presença de Adailton Targino (segundo, da direita para a esquerda), um dos guias pioneiros da FALS.

.

Não Deixe o Cometa se Tornar a Frustração do Século!

O cometa C/2023 A3 (Tsuchinshan-ATLAS) é realmente um dos cometas mais brilhantes das últimas décadas. Como uma vantagem adicional para observadores no hemisfério sul, a passagem pelo periélio, o ponto da órbita do cometa mais próximo ao Sol, ocorreu com o cometa ao Sul da eclíptica – o plano da órbita terrestre – nos garantindo uma visão privilegiada no período de maior brilho do cometa.

Cometa C/2023 A3 (Tsuchinshan-ATLAS) exibindo uma longa cauda na constelação de Leão, fotografado em uma região afastada da poluição luminosa em São José dos Campos (SP). [imagem: Wandeclayt M./Projeto Céu Profundo]

A imagem que abre esta postagem foi capturada na madrugada de 02 de outubro, em São José dos Campos (SP), numa região afastada da zona urbana da cidade. Acordamos às 3 da manhã e nos deslocamos até às margens da rodovia Carvalho Pinto, para evitar a contaminação das luzes da cidade na imagem. Esse esforço garantiu que a longa cauda do cometa fosse registrada quase que preenchendo todo o campo da imagem, com uma objetiva de 85 mm.

Uma imagem inegavelmente deslumbrante, não? Mas todo esse esplendor que tem deixado eufórica a comunidade da astrofotografia está muito longe do que pode ser contemplado a olho nu.

Na verdade, encontrar o cometa tão baixo no horizonte e mergulhado nos primeiros raios do amanhecer é uma tarefa desafiadora. E se você espera uma imagem tão contrastada e brilhante quanto as que você certamente tem visto publicadas, a única coisa que vai encontrar é frustração.

Então não Vou Ver o Cometa?

Há algumas dicas para melhorar sua experiência ao observar um cometa. A primeira vale pra qualquer tipo de observação de objetos tênues no céu: afaste-se da poluição luminosa! As luzes da cidade mascaram os objetos menos luminosos ou mais difusos.

E mesmo que você se afaste em direção a áreas rurais ou zonas nas periferias da cidade, evite ter luzes fortes na vizinhança, especialmente luzes que você possa ver diretamente. Olhar para telas também vai prejudicar sua adaptação à escuridão, então deixe seu celular no bolso se quiser manter suas pupilas dilatadas.

Outro obstáculo a ser contornado é a baixa elevação do cometa sobre o horizonte. É preciso procurar locais com vista desobstruída na direção do cometa. De preferência locais que permitam ver pelo menos a partir de 5º acima do horizonte.

Mas a Iluminação Atrapalha Tanto Assim?

Na imagem abaixo é possível perceber o impacto da poluição luminosa. O brilho do céu, causado pela excessiva e mal direcionada iluminação da cidade, oculta estrelas e diminui a visibilidade do cometa. A rede de observadores de cometas COBS estima magnitude próxima a 1.5 no momento da foto.

Em um local escuro e com o cometa alto no céu, isso significaria um objeto muito brilhante! Mas no meio da cidade e com o objeto baixo, observado através de uma camada muito mais espessa da atmosfera (com o agravante da presença da fumaça das queimadas) o cometa é apenas marginalmente percebido a olho nu. E as luzes da cidade são refletidas e espalhadas pelas partículas em suspensão, deixando o céu excessivamente brilhante!

Nessas condições, o “Cometa do Século” fica reduzido a pouco mais que uma sutil manchinha que parece sumir quando olhamos diretamente para ela.

Cometa C/2023 A3 (Tsuchinshan-ATLAS) fotografado sobre a cidade de São José dos Campos (SP). O cometa está a menos de 10º acima do horizonte, imerso na poluição luminosa. Apesar de exibir bom contraste e brilho na imagem, o cometa não era facilmente perceptível a olho nu. [imagem: Wandeclayt M./Projeto Céu Profundo].

É preciso também saber exatamente para onde olhar! Você pode se orientar pelo mapa abaixo, ou consultar diagramas mais detalhados como os fornecidos pelo site TheSkyLive.

E com Instrumentos?

O brilho do cometa evoluiu bem após a passagem pelo periélio, mas isso não garante que ele seja facilmente perceptível a olho nu, principalmente de dentro de áreas urbanas. Mas telescópios não são os melhores instrumentos para a observação de cometas. Com os grandes aumentos e pequenos campos proporcionados pelos telescópios, vemos apenas a região ao redor do núcleo do cometa. Se você quer uma visão mais ampla, binóculos são os instrumentos ideais. Binóculos com 50 mm de abertura e 7 aumentos (identificados como 7×50) são uma boa escolha: são leves, produzem imagens luminosas e com grande campo e são relativamente baratos.

Curva de luz do cometa C/2023 A3, medida por observadores da rede COBS.

Tudo Vale a Pena (Se a Alma Não é Pequena).

Mas merecendo o título “Cometa do Século”ou não, faça um esforço para observar com seus próprios olhos o C/2023 A3 e qualquer outro cometa que esteja acessível de sua latitude. São eventos raros e cada cometa é único! Cada um destes visitantes dos confins do Sistema Solar evolui de maneiras distintas, podendo desenvolver uma ou mais caudas, com diferentes geometrias, comprimentos brilhos e composição. Sua evolução também pode ser bastante dinâmica exibindo grandes variações de brilho e erupções ou mesmo podendo se fragmentar.

E mesmo que os cometas não sejam realmente os faróis ofuscantes que os títulos das manchetes ou os posts em redes sociais querem nos fazer crer sejam, vale a pena o esforço de buscar locais e condições melhores para observar essas “manchinhas”. Pode ser uma jornada realmente trabalhosa, mas garantimos que são grandes as chances de a experiência se tão recompensadora que você sentir a tentação de se juntar definitivamente à turma da caça aos cometas!

Não compre! Adote uma estrela!

Assim como o Mickey Mouse da animação de 1928 que acaba de entrar em domínio público, catálogos astronômicos podem ser usados livremente sem que você precise pagar por eles.

Há várias maneiras de se identificar uma mesma estrela no céu. Algumas estrelas possuem nomes próprios, como Sírius, a estrela mais brilhante na constelação do Cão Maior. Ou como Betelgeuse e Rigel em Órion. Ou ainda Antares, a gigante vermelha que marca o coração da constelação do Escorpião.

Muitos desses nomes tem origem na Grécia antiga e trilharam um longo caminho até os nossos dias através de obras como o Almajesto, escrito no séc. II por Claudio Ptolomeu, que resgatava o trabalho de Hiparco (190 a.C – 120 a.C) que elaborou o primeiro catálogo estelar e introduziu o conceito de “grandezas” para quantificar o brilho das estrelas, atribuindo seis grandezas às estrelas então visíveis a olho nu, indo da primeira grandeza para as mais brilhantes até a sexta grandeza para as estrelas no limite da visibilidade. Esta classificação em grandezas foi preservada no sistema moderno de magnitudes de objetos astronômicos.

A ponte entre Claudio Ptolomeu e o Renascimento europeu coube principalmente a astrônomos árabes, que deixaram um rico legado de nomenclatura estelar, seja por nomes cunhados originalmente pelos povos do deserto ou por transcrições de nomes gregos. O Livros das Estrelas Fixas (964 d.C) do astrônomo persa Abd al-Rahman al-Sufi, descreve as 48 constelações listadas por Ptolomeu e inclui tabelas com a localização e magnitude das estrelas e listas com seus nomes árabes. Al Sufi é uma das grandes fontes de nomes estelares que se perpetuaram e foi uma grande influência para a Astronomia europeia.

A constelação de Escorpião representada no Livro das Estrelas Fixas, de Al Sufi.

Nomes latinos como Spica (a Espiga) em Virgem, ou Bellatrix (a Guerreira) em Órion misturam-se a nomes de origem árabe que você certamente conhece: Betelgeuse (que vem de Ibt al Jauzah, A axila do que está no meio) em Órion, Aldebaran ( Al Dabaran, Aquela que segue. No caso, segue as Plêiades) em Touro e Denébola (Al Dhanab al Asad, a cauda do Leão) em Leão.

Mas nem todas as estrelas visíveis possuem nomes próprios. Johann Bayer (1572-1625) publicou em 1603 seu atlas estelar Uranometria (Uranometria Omnium Asterismorum) introduzindo um novo sistema de nomenclatura: a partir da estrela mais brilhante da constelação, atribuem-se em ordem alfabética as letras do alfabeto grego, seguido do genitivo em latim da constelação. Assim, estrela mais brilhante na constelação do Touro (Aldebaran) é a alfa Tauri, a segunda mais brilhante é a beta Tauri e assim sucessivamente. Após a última letra do alfabeto grego (ômega), Bayer utilizou as letras do alfabeto latino.

O Uranometria de Bayer certamente simplificou a maneira como identificamos estrelas, mas ainda assim, é insuficiente quando mergulhamos em direção a estrelas menos luminosas. A sequência necessária ao trabalho de Bayer veio com o catálogo criado por John Flamsteed (1646-1719) que ordenava as estrelas não pelo seu brilho aparente mas por suas coordenadas, listando-as em ordem crescente de ascenção reta em seu Stellarum Inerrantium Catalogus Britannicus (Catálogo Britânico das Estrelas Fixas) incluído no volume 3 do Historiae coelestis Britannicae, publicado postumamente em 1725.

A esta altura, já temos três maneiras de identificar as estrelas mais brilhantes: por seu nome próprio e pelas designações de Bayer e de Flamsteed. Assim, a estrela número 58 na constelação de Órion (58 Orionis) do catálogo de Flamsteed é também a alfa Orionis na designação de Bayer, além de ter seu nome próprio: Betelgeuse.

Região das Constelações de Órion e Touro no Atlas de Flamsteed. Constelações que não se popularizam como “O pequeno telescópio de Herschel” e “A Harpa de George” aparecem representadas nessa edição francesa do Atlas de 1776 [Acervo online da Universiteit Utrecht].

Das 2936 estrelas listadas na versão final do catálogo de Flamsteed, no séc 18, até os catálogos contemporâneos o salto no número de objetos catalogados não foi nada singelo. No séc. 19, o atlas Uranographia (1801) de Johann Elert Bode (1747-1826) incluía novas estrelas do hemisfério sul celeste e representava novas constelações imaginadas por Hevelius e Lacalle, chegando a 17240 objetos. O Uranometria Argentina(1879), de Benjamin Gould, elevava o número de objetos a 32448.

No séc. 20, novos grandes catálogos surgiram, como os populares Henry Draper Catalog (HD), Bright Star Catalog (Harvard Revised Photometry, HR) e Smithsonian Astrophysical Observatory Catalog (SAO), todos usando designações alfanuméricas. Usando esses catálogos, Betelgeuse pode ser chamada de HD39801, HR 2061 ou SAO 113271.

Consultando dados do catálogo Gaia DR1 em uma região do aglomerado globular de estrelas M4, imageado pelo Telescópio Espacial Hubble. Tanto as imagens do Hubble quanto os dados do Gaia são públicos e amplamente utilizados por cientistas profissionais e cidadãos.

Saltando para a atualidade, na era dos mapeamentos realizados por satélites, chegamos catálogos 1 milhão de vezes maiores que o de Bayer. Em sua versão publicada em 2022, o catálogo gerado pelo satélite Gaia, da Agência Espacial Europeia (ESA), lista 1,5 bilhão de fontes com magnitude, posição, paralaxe e movimento próprio.

O valor de um catálogo mora na sua utilidade e na ampla adoção pela comunidade. Ao listar um objeto em uma publicação científica é preciso que aquele objeto seja inequivocamente identificado por qualquer pessoa interessada, cientista profissional ou não, independente de sua nacionalidade ou cultura. E isto é possível graças ao uso de catálogos que são de conhecimento de toda a comunidade de observação e pesquisa em astronomia, incluindo a observação amadora. Se recebemos uma previsão de que a estrela HD39801 será ocultada por um asteroide, prontamente sabemos suas coordenadas e magnitude e podemos identificar que a estrela é a nossa familiar Betelgeuse.

Isso significa que um catálogo particular, sem qualquer uso pela comunidade não tem valor? A resposta curta é sim. Mas há quem consiga lucrar com isso, aproveitando-se da ingenuidade do público menos familiarizado com o tema. Há quem cobre para batizar uma estrela com seu nome, oferecendo vistosos certificados de inclusão num catálogo que será utilizado por um total de zero pessoas. Aparentemente o encontro entre oportunismo e ingenuidade é o motor desse mercado. Falamos com tranquilidade: vender estrelas é golpe.

O fato é que a compra do nome de uma estrela não tem qualquer respaldo da entidade mundial de regulação da nomenclatura astronômica, a União Astronômica Internacional (IAU) e mais ninguém além de você e de quem ganhou o seu dinheiro vai fazer a mínima ideia de que você deu seu nome ao distante astro.

Catálogos oficiais, utilizados pela comunidade astronômica, não comercializam nomes de estrelas ou de outros objetos astronômicos. Fuja desse golpe.

E como a IAU não comercializa nomes de objetos astronômicos, talvez faça mais sentido adotar livre e gratuitamente a estrela de sua preferência e quem sabe até presentear seus entes queridos com sua estrela favorita sem precisar pagar para qualquer empresa charlatã. E se você não possui um telescópio, pode explorar o céu e escolher sua estrela, ou talvez uma nebulosa ou uma galáxia inteira, em um atlas celeste fotográfico como o ESASky. Provavelmente você não vai poder mandar entregar esse presente, mas não temos dúvidas de que dedicar a alguém um belo objeto astronômico que você pacientemente encontrou após explorar uma região do céu é um presente único e tocante. Mas o mais importante é: não compre! Adote!

Referências

Allen, Richard Hinckley. Star Names and Their Meanings (1899). https://archive.org/details/starnamesandthe00allegoog/

Abd al-Rahman al-Sufi. Suwar al-kawākib (O Livro das Estrelas Fixas)(964). https://www.loc.gov/item/2008401028

Bayer, Johann. Uranometria Omnium Asterismorum (1603). https://archive.org/details/uranometria-omnium-asterismorum-continens-schemata/

Flamsteed, John. Atlas céleste de Flamstéed (1776). http://objects.library.uu.nl/reader/resolver.php?obj=000527025&type=2

Flamsteed, John. Historiae coelestis Britannicae (1725). https://archive.org/details/bub_gb_XGkA07NtjhAC/

União Astronômica Internacional (IAU). Star Names. https://www.iau.org/public/themes/naming_stars/

Qual a Distância até aquela Estrela?

Você certamente conhece a constelação do Cruzeiro do Sul e possivelmente consegue reconhecê-la com facilidade no céu noturno, não?
Bem, talvez em um céu realmente escuro, longe da poluição luminosa das áreas urbanas, como na imagem abaixo, haja tantas estrelas visíveis que a tarefa de identificar o Cruzeiro do Sul seja um pouco mais desafiadora. Mas vamos dar uma ajudinha. Marcamos aí as 5 estrelas mais brilhantes que formam o asterismo do Cruzeiro!

E usamos a palavra “asterismo” porque a constelação do Cruzeiro do Sul, ou Crux, não se resume a essas 5 estrelas. O conceito moderno de constelação, adotado pela União Astronômica Internacional (IAU), orgão responsável pela nomenclatura oficial usada pela astronomia profissional, não é a de um “grupo de estrelas”.

A constelação na verdade é uma área do céu, com bordas bem definidas de acordo com suas coordenadas celestes. E o que a IAU define como a constelação do Cruzeiro é toda a região em verde na imagem abaixo.

Carta Celeste da Região do Cruzeiro do Sul e adjacências, criada no software Sky Charts [créditos: Wandeclayt M./@ceuprofundo]

Assim, todas as estrelas, nebulosas, aglomerados estelares ou outros objetos astronômicos vistos na região demarcada, estão na constelação do Cruzeiro.

E essas estrelas estão próximas umas das outras?

Esse é outro aspecto que precisamos discutir! As estrelas de uma constelação, não estão necessariamente próximas umas das outras. Estão apenas na mesma direção aproximada no céu, mas podem apresentar distâncias variadas entre elas.

Mas para criar um mapa tridimensional do céu, conhecendo não apenas a direção das estrelas na esfera celeste mas também suas distâncias, foi preciso esperar dois milênios.

Medindo distâncias.

A área da Astronomia que se ocupa de medir as posições dos objetos celestes se chama Astrometria e surgiu muito antes dos telescópios passarem a ser empregados para a observação do céu no século 17.

Hiparco, na Grécia do século 2 a.C, já mapeava as estrelas e o Almagesto, a grande compilação astronômica de Claudio Ptolomeu no Egito do século 2 d.C, trazia os mapas das constelações catalogadas por Hiparco e a classificação das estrelas por seu brilho (as medidas de brilho são outra atividade observacional importante: a Fotometria).

No século 16, Tycho Brahe foi um criterioso observador da era pré telescópica e suas precisas observações astrométricas do planeta Marte foram a base para que seu discípulo Johannes Kepler enunciasse as leis empíricas do movimento planetário. Empíricas porque ainda não havia uma teoria gravitacional que explicasse a natureza do movimento orbital e a geometria das órbitas descrita por Kepler era totalmente baseada nos dados observacionais.

Mas medir distâncias estava longe do que Tycho conseguiria fazer no século 16 e completamente fora do alcance do que Hiparco poderia sonhar em fazer no século 2 a.C.

O método geométrico usado hoje para medir indiretamente as distâncias estelares é conceitualmente simples e está representado no diagrama da figura abaixo. Observamos uma estrela a partir de uma posição da órbita terrestre e registramos sua posição. Seis meses depois, a Terra estará numa posição diametralmente oposta em sua órbita e, portanto, a aproximadamente 300 milhões de quilômetros distante da posição anterior. Fazemos uma nova observação e registramos o deslocamento aparente sofrido pela estrela, devido à mudança do ponto de vista de nossa observação. Chamamos esse deslocamento aparente de “paralaxe” e ele vai variar com a distância da estrela. Estrelas mais próximas apresentarão uma paralaxe maior. Estrelas mais distantes, uma paralaxe menor.

Você pode testar esse método olhando para seu dedo indicador com o braço esticado alternadamente com cada um dos olhos. Você vai perceber que o dedo vai parecer se deslocar a medida que você troca de olho ao observá-lo. Aproxime o dedo um pouco mais do rosto. O deslocamento vai parecer maior.

Mas se o método é assim tão simples, por que Hiparco e Tycho não poderiam medir a distância até as estrelas mais próximas? Aí aparecem dois problemas! O primeiro deles é que a distância até as estrelas é muito maior do que qualquer pensador da antiguidade, ou mesmo do Renascimento, se arriscou a estimar e a paralaxe estelar é muito pequena. E o segundo é que imperava o modelo geocêntrico do Universo, que acabava sendo reforçado pela falha na detecção da paralaxe estelar, afinal, se não há paralaxe, a Terra deveria ser imóvel!

A largada da corrida para medir a paralaxe estelar só é dada com o triunfo do heliocentrismo e com a compreensão do movimento orbital da Terra, graças inicialmente a Kepler e Newton. A partir do momento que tínhamos certeza que a Terra orbitava o Sol, necessariamente deveria haver alguma paralaxe a ser medida, ainda que muito pequena.

Mas quanto é uma paralaxe “muito pequena“?

Vamos introduzir mais alguns conceitos para deixar isso mais claro.
Na Astrometria usamos medidas angulares para falar da posição ou da separação entre objetos na esfera celeste ou do diâmetro aparente de alguns corpos.

Um círculo é tradicionalmente dividido em 360 partes iguais chamadas de graus (°). A separação entre o horizonte e o zênite (o ponto no céu que fica acima da sua cabeça) é de 1/4 de círculo ou de 90º. O Sol e a Lua representam no céu um diâmetro de 0,5°.

Essa divisão do círculo em 360 graus é uma herança da Babilônia e remonta a mais de 2000 anos antes de Cristo. Nesse sistema, cada grau é dividido em 60 partes chamadas “minutos de arco” (ou 60′) e cada minuto de arco é dividido em 60 segundos de arco (ou 60″). Ou seja, 1º equivale a 3600″.

Há inclusive uma unidade de distância definida a partir da paralaxe, o parsec.
Um parsec é a distância na qual um objeto exibe uma paralaxe de 1 segundo de arco, e equivale a 3,26 anos luz.

E aí está o grande desafio! Como nenhuma estrela, além do Sol, está localizada a menos de um parsec, a paralaxe a ser medida é menor que 1 segundo de arco, ou mais que 3600 vezes menor do que 1°.

Michael Perryman em the History of Astrometry aponta que as melhores observações de Tycho alcançaram uma resolução de 20 segundos de arco, bem longe da resolução necessária para medir a paralaxe estelar.

No século 18, William Herschel e sua irmã Caroline realizaram grandes descobertas com telescópios de dimensões nada modestas (mais de 1 m de diâmetro e 12 metros de distância focal). Entre as contribuições dos irmãos Herschel para a Astronomia estão a descoberta de Urano e duas de suas luas, de duas luas de Saturno e a detecção do movimento orbital em estrelas binárias. Mas eles falharam na detecção da paralaxe estelar. Não por limitações instrumentais, mas por não terem selecionado estrelas próximas o suficiente para exibir uma paralaxe mensurável.

Uma melhor seleção de estrelas candidatas a exibir uma maior paralaxe (e portanto estarem mais próximas) surge a partir de critérios sugeridos pelo astrônomo Wilhelm Struve na primeira metade do século 19: estrelas brilhantes, com grande movimento próprio (além do efeito da paralaxe, as estrelas estão realmente se movendo no céu e um movimento próprio mais rápido pode significar que a estrela está mais próxima de nós) e, no caso de estrelas binárias, estrelas que estejam bem separadas, a julgar por seu movimento orbital.[1]

Foi na década de 1830 que as primeiras medidas confiáveis de paralaxe foram finalmente publicadas. Struve anunciou uma paralaxe de 1/8 de segundo de arco para Vega (a alfa de Lira) e Friedrich Bessel encontrou uma paralaxe de 0,314 segundos de arco para a estrela 61 Cygni. Trabalhos seguidos pela determinação da paralaxe de Alfa Centauri, por Thomas Henderson em 1839.

Embora Alfa Centauri faça parte do sistema estelar mais próximo do Sistema Solar, ela está fora do alcance de observadores nas latitudes da Europa (consequências de uma Terra esférica) e foi observada por Henderson em uma campanha no Cabo da Boa Esperança.

E parou por aí?

A Astrometria seguiu muito bem, obrigado, e mapas cobrindo ambos os hemisférios celestes foram produzidos incorporando dados cada vez mais precisos de coordenadas celestes, movimento próprio e distância, até que a própria atmosfera terrestre tornou-se o principal limitante para o que poderia ser medido com telescópios instalados na superfície.

O novo salto de qualidade vem com a proposta apresentada em 1967 pelo francês Pierre Lacroute[2]: um telescópio dedicado a astrometria e fotometria em órbita da Terra, acima da atmosfera, onde poderia catalogar estrelas muito menos brilhantes e atingir precisão sem precedentes nas medidas astrométricas e cobrindo inteiramente ambos os hemisférios celestes (outra restrição encontrada pelos telescópios na superfície é a impossibilidade de observar todo o céu).

HIPPARCOS foi o primeiro satélite dedicado a astrometria. Lançado pela ESA em 1989, inaugurou uma era de alta precisão nos catálogos estelares [imagem: Agência Espacial Europeia].

A ideia culminou no lançamento do satélite Hipparcos (HIgh Precision PARallax COllecting Satellite), pela Agência Espacial Europeia (ESA) em 1989. O satélite coletou dados até 1993, dando origem ao catálogo Hipparcos, com quase 120 mil estrelas. Seus dados geraram ainda os catálogos Tycho e Tycho 2, extrapolando a marca de 2,5 milhões de estrelas catalogadas.

2,5 milhões de estrelas parece muito? E é! Mas o lançamentoo em 2013, também pela ESA, de um novo satélite astrométrico, o Gaia, multiplicou por 1000 esse número, ultrapassando 1,8 bilhão de fontes catalogadas na terceira liberação de dados da missão (Gaia data Release 3).

E como eu posso saber a distância até as estrelas do Cruzeiro?

[Vamos fazer umas continhas aqui e está tudo bem se você pular essa seção, mas garantimos que o resultado é divertido e vai valer a pena se você tentar nos acompanhar aqui.]

Os catálogos Hipparcos, Tycho, Tycho 2 e Gaia são públicos. Isso significa que qualquer pessoa pode ter acesso a todos os parâmetros de astrometria e fotometria medidos pelos satélites. É possível acessá-los usando ferramentas especializadas em operações com dados astronômicos como o TOPCAT ou através de recursos disponíveis em ferramentas de visualização de imagens e dados como o SAO Image DS9. O acesso também pode ser feito através de bibliotecas em Python ou diretamente em bases de dados como o SIMBAD.

E se você quer descobrir as distâncias até as 5 estrelas mais brilhantes do Cruzeiro (ou a qualquer estrela catalogada) é só consultar a paralaxe dessas estrelas na pesquisa básica do SIMBAD. Conhecendo a paralaxe a relação é direta:

distância (em parsecs) = 1000 * (1 / paralaxe (em milissegundos de arco)).

A multiplicação por 1000 é necessária por que a paralaxe é dada nos catálogos em “milissegundo de arco”. Se você quiser a distância em anos luz, a conversão também é imediata:

distância (em anos-luz) = 3,26 * distância (em parsecs).

Agora que você já sabe o que fazer com os dados, pode colocar a mão na massa.

Acesse a busca básica do SIMBAD (figura abaixo) e pesquise as cinco estrelas mais brilhantes da constelação do Cruzeiro do Sul: “alf cru”, “bet cru”, “gam cru”, “del cru” e “eps cru”.

Tela de pesquisa básica do SIMBAD: http://simbad.cds.unistra.fr/simbad/sim-fbasic. Insira o nome do objeto a ser pesquisado (no caso, “alfa crux”, “alf cru” ou “alp cru” correspondem a mesma estrela, a alfa do Cruzeiro do Sul).

Na janela de resultados, use o valor no campo “Parallaxes (mas)” para calcular as distâncias pelas relações que apresentamos acima. Se tudo der certo, você vai encontrar os mesmos valores apresentados na próxima seção.

Tela de resultados da busca básica do SIMBAD. Use o valor da paralaxe no campo indicado pela seta para computar a distância até a estrela consultada.

O Cruzeiro do Sul em três dimensões.

Consultando bases públicas de dados astronômicos como o SIMBAD, podemos encontrar as distâncias para qualquer estrela catalogada. E para alguns grupos de estrelas os resultados podem ser surpreendentes. Por exemplo, você imaginava que Rubídea (gama Crux) apesar de ser apenas a terceira estrela mais brilhante na constelação do cruzeiro é a que está mais próxima de nós, a apenas 88 anos-luz? Na verdade ela está mais próxima do Sol do que de qualquer uma das outras estrelas que formam a Cruz, já que a estrela seguinte, epsilon Crux, a Intrometida, está a quase 230 anos-luz de nós.

EstrelaParalaxe
(milissegundos de arco)
Distância
(anos-luz)
alp Crux (Acrux)10.13322.01
beta Crux (Mimosa)11.71278.57
gama Crux (Rubídea)36.8388.57
delta Crux (Pálida)7.1681455.07
epsilon Crux (Intrometida)14.1999229.72
Dados de paralaxe e distância das estrelas mais brilhantes do Cruzeiro do Sul. Distâncias calculadas a partir dos
dados de paralaxe acessados via SIMBAD.

Combinando os dados astrométricos do catálogo em uma visualização tridimensional, podemos evidenciar as diferenças de distância entre as estrelas que formam o asterismo da cruz na constelação.

Precisamos concordar que foi uma jornada e tanto! Há 200 anos era instrumentalmente impossível determinar a distância até as estrelas. Hoje, temos telescópios espaciais com capacidade de mapear bilhões de fontes em nossa galáxia ou até em galáxias vizinhas. E o melhor de tudo isso: todos esses dados estão a um clique de distância de você.


Para Pensar um Pouco.

  • Usando o método que apresentamos no texto, determine a distância até alfa Centauri.
  • Alfa Centauri é na verdade um sistema triplo e você pode pesquisar cada uma de suas componentes individualmente: “alf Cen A”, “alf Cen B” e “alf Cen C”. Pesquise no SIMBAD e identifique qual das componentes está mais próxima de nós.
  • O SIMBAD informa também o brilho das estrelas. Observa no campo “Fluxes” a linha iniciada por “V”. Essa é a magnitude visual do objeto. Quanto maior a magnitude, menor o brilho. Essa escala é também uma herança de Hiparco e Ptolomeu, que apresentaram as estrelas divididas em seis grandezas, ou magnitudes. As estrelas de primeira grandeza eram as mais brilhantes e as de sexta grandeza as menos brilhantes visíveis a olho nu. O sistema moderno de magnitudes é uma adaptação dessa escala. A diferença de 1 magnitude significa uma diferença de fluxo (brilho) de 2,5 vezes. Assim, uma estrela de magnitude 0 é 2,5 vezes mais brilhante que uma estrela com magnitude 1. Uma diferença de 5 magnitudes significa uma diferença de 100 vezes no fluxo (brilho). O limite de magnitude para a observação a olho nu é 6. Consulte a magnitude da estrela mais próxima do sistema alfa Cen no SIMBAD. Ela é visível a olho nu?

Código Fonte

Para reproduzir o gráfico tridimensional ou acessa o SIMBAD atráves de um script em linguagem Python, use nosso notebook disponibilizado na plataforma Google Colab:
https://colab.research.google.com/drive/1R0nHygvdFoBeDj34h-4O-JotWue_Bz0i?usp=sharing

Ao abrir o notebook, crie uma nova cópia do arquivo para que seja possível editá-la (figura abaixo). Não é necessário instalar nenhum componente localmente e toda a execução ocorre nos servidores da plataforma Google Colab. O código é bem comentado e você não precisa entender de programação para usar o script. Não requer prática nem tampouco habilidade. Qualquer criança brinca e se diverte.

Após criar uma cópia, o código será inteiramente editável e você poderá experimentar utilizar outras estrelas para consulta ou mudar os parâmetros usados na construção da animação.
Para executar o script, clique no ícone indicado pela seta (imagem abaixo) em cada bloco de código.

Os resultados são exibidos na mesma janela do código e cada bloco e executado em segundos.

Referências